The overall coverage and phylum spectrum of 175 primers and 512 primer pairs were evaluated in silico with respect to the SILVA 16S/18S rDNA non-redundant ...
SkiptoMainContent
Advertisement
SearchMenu
Menu
NavbarSearchFilter
ThisissueAllNucleicAcidsResearchSubject:Nucleicacidamplification
AllNARJournalsAllJournals
MobileMicrositeSearchTerm
Search
SignIn
Issues
Sectionbrowse
ChemicalBiologyandNucleicAcidChemistry
ComputationalBiology
DataResourcesandAnalyses
GeneRegulation,ChromatinandEpigenetics
GenomeIntegrity,RepairandReplication
Genomics
MolecularBiology
NucleicAcidEnzymes
RNAandRNA-proteincomplexes
StructuralBiology
SyntheticBiologyandBioengineering
MethodsOnline
SurveysandSummaries
Database
WebServer
Advancearticles
Submit
AuthorGuidelines
SubmissionSite
OpenAccess
Purchase
About
AboutNucleicAcidsResearch
EditorialBoard
InformationofReferees
AdvertisingandCorporateServices
JournalsCareerNetwork
Alerts
Policies
Self-ArchivingPolicy
DispatchDates
Issues
Sectionbrowse
ChemicalBiologyandNucleicAcidChemistry
ComputationalBiology
DataResourcesandAnalyses
GeneRegulation,ChromatinandEpigenetics
GenomeIntegrity,RepairandReplication
Genomics
MolecularBiology
NucleicAcidEnzymes
RNAandRNA-proteincomplexes
StructuralBiology
SyntheticBiologyandBioengineering
MethodsOnline
SurveysandSummaries
Database
WebServer
Advancearticles
Submit
AuthorGuidelines
SubmissionSite
OpenAccess
Purchase
About
AboutNucleicAcidsResearch
EditorialBoard
InformationofReferees
AdvertisingandCorporateServices
JournalsCareerNetwork
Alerts
Policies
Self-ArchivingPolicy
DispatchDates
Close
searchfilter
Thisissue
AllNucleicAcidsResearch
Subject:Nucleicacidamplification
AllNARJournals
AllJournals
searchinput
Search
AdvancedSearch
SearchMenu
ArticleNavigation
Closemobilesearchnavigation
ArticleNavigation
Volume41
Issue1
1January2013
ArticleContents
Abstract
INTRODUCTION
MATERIALSANDMETHODS
RESULTSANDDISCUSSION
CONCLUSIONS
AVAILABILITY
SUPPLEMENTARYDATA
FUNDING
ACKNOWLEDGEMENTS
REFERENCES
ArticleNavigation
ArticleNavigation
Evaluationofgeneral16SribosomalRNAgenePCRprimersforclassicalandnext-generationsequencing-baseddiversitystudies
AnnaKlindworth,
AnnaKlindworth
1MaxPlanckInstituteforMarineMicrobiology,MicrobialGenomicsandBioinformaticsResearchGroup,Celsiusstr.1,28359Bremen,2JacobsUniversityBremen,SchoolofEngineeringandSciences,Campusring1,28759Bremen,3RiboconGmbH,D-28359Bremen,Germanyand4DepartmentofMicrobialEcology,UniversityofVienna,Althanstr.14,1090Vienna,Austria
Searchforotherworksbythisauthoron:
OxfordAcademic
PubMed
GoogleScholar
ElmarPruesse,
ElmarPruesse
1MaxPlanckInstituteforMarineMicrobiology,MicrobialGenomicsandBioinformaticsResearchGroup,Celsiusstr.1,28359Bremen,2JacobsUniversityBremen,SchoolofEngineeringandSciences,Campusring1,28759Bremen,3RiboconGmbH,D-28359Bremen,Germanyand4DepartmentofMicrobialEcology,UniversityofVienna,Althanstr.14,1090Vienna,Austria
Searchforotherworksbythisauthoron:
OxfordAcademic
PubMed
GoogleScholar
TimmySchweer,
TimmySchweer
1MaxPlanckInstituteforMarineMicrobiology,MicrobialGenomicsandBioinformaticsResearchGroup,Celsiusstr.1,28359Bremen,2JacobsUniversityBremen,SchoolofEngineeringandSciences,Campusring1,28759Bremen,3RiboconGmbH,D-28359Bremen,Germanyand4DepartmentofMicrobialEcology,UniversityofVienna,Althanstr.14,1090Vienna,Austria
Searchforotherworksbythisauthoron:
OxfordAcademic
PubMed
GoogleScholar
JörgPeplies,
JörgPeplies
1MaxPlanckInstituteforMarineMicrobiology,MicrobialGenomicsandBioinformaticsResearchGroup,Celsiusstr.1,28359Bremen,2JacobsUniversityBremen,SchoolofEngineeringandSciences,Campusring1,28759Bremen,3RiboconGmbH,D-28359Bremen,Germanyand4DepartmentofMicrobialEcology,UniversityofVienna,Althanstr.14,1090Vienna,Austria
Searchforotherworksbythisauthoron:
OxfordAcademic
PubMed
GoogleScholar
ChristianQuast,
ChristianQuast
1MaxPlanckInstituteforMarineMicrobiology,MicrobialGenomicsandBioinformaticsResearchGroup,Celsiusstr.1,28359Bremen,2JacobsUniversityBremen,SchoolofEngineeringandSciences,Campusring1,28759Bremen,3RiboconGmbH,D-28359Bremen,Germanyand4DepartmentofMicrobialEcology,UniversityofVienna,Althanstr.14,1090Vienna,Austria
Searchforotherworksbythisauthoron:
OxfordAcademic
PubMed
GoogleScholar
MatthiasHorn,
MatthiasHorn
1MaxPlanckInstituteforMarineMicrobiology,MicrobialGenomicsandBioinformaticsResearchGroup,Celsiusstr.1,28359Bremen,2JacobsUniversityBremen,SchoolofEngineeringandSciences,Campusring1,28759Bremen,3RiboconGmbH,D-28359Bremen,Germanyand4DepartmentofMicrobialEcology,UniversityofVienna,Althanstr.14,1090Vienna,Austria
Searchforotherworksbythisauthoron:
OxfordAcademic
PubMed
GoogleScholar
FrankOliverGlöckner
FrankOliverGlöckner
*
1MaxPlanckInstituteforMarineMicrobiology,MicrobialGenomicsandBioinformaticsResearchGroup,Celsiusstr.1,28359Bremen,2JacobsUniversityBremen,SchoolofEngineeringandSciences,Campusring1,28759Bremen,3RiboconGmbH,D-28359Bremen,Germanyand4DepartmentofMicrobialEcology,UniversityofVienna,Althanstr.14,1090Vienna,Austria
*Towhomcorrespondenceshouldbeaddressed.Tel:+494212028970;Fax:+494212028580;Email:[email protected]
Searchforotherworksbythisauthoron:
OxfordAcademic
PubMed
GoogleScholar
NucleicAcidsResearch,Volume41,Issue1,1January2013,Pagee1,https://doi.org/10.1093/nar/gks808
Published:
28August2012
Articlehistory
Received:
12December2011
Accepted:
31July2012
Published:
28August2012
PDF
SplitView
Views
Articlecontents
Figures&tables
Video
Audio
SupplementaryData
Cite
Cite
AnnaKlindworth,ElmarPruesse,TimmySchweer,JörgPeplies,ChristianQuast,MatthiasHorn,FrankOliverGlöckner,Evaluationofgeneral16SribosomalRNAgenePCRprimersforclassicalandnext-generationsequencing-baseddiversitystudies,NucleicAcidsResearch,Volume41,Issue1,1January2013,Pagee1,https://doi.org/10.1093/nar/gks808
SelectFormat
Selectformat
.ris(Mendeley,Papers,Zotero)
.enw(EndNote)
.bibtex(BibTex)
.txt(Medlars,RefWorks)
Downloadcitation
Close
PermissionsIcon
Permissions
Share
Email
Twitter
Facebook
More
NavbarSearchFilter
ThisissueAllNucleicAcidsResearchSubject:Nucleicacidamplification
AllNARJournalsAllJournals
MobileMicrositeSearchTerm
Search
SignIn
Close
searchfilter
Thisissue
AllNucleicAcidsResearch
Subject:Nucleicacidamplification
AllNARJournals
AllJournals
searchinput
Search
AdvancedSearch
SearchMenu
Abstract
16SribosomalRNAgene(rDNA)ampliconanalysisremainsthestandardapproachforthecultivation-independentinvestigationofmicrobialdiversity.Theaccuracyoftheseanalysesdependsstronglyonthechoiceofprimers.Theoverallcoverageandphylumspectrumof175primersand512primerpairswereevaluatedinsilicowithrespecttotheSILVA16S/18SrDNAnon-redundantreferencedataset(SSURef108NR).Basedonthisevaluationaselectionof‘bestavailable’primerpairsforBacteriaandArchaeaforthreeampliconsizeclasses(100–400,400–1000,≥1000bp)isprovided.Themostpromisingbacterialprimerpair(S-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21),withanampliconsizeof464bp,wasexperimentallyevaluatedbycomparingthetaxonomicdistributionofthe16SrDNAampliconswith16SrDNAfragmentsfromdirectlysequencedmetagenomes.Theresultsofthisstudymaybeusedasaguidelineforselectingprimerpairswiththebestoverallcoverageandphylumspectrumforspecificapplications,thereforereducingthebiasinPCR-basedmicrobialdiversitystudies.
INTRODUCTION
Understandingmicrobialdiversityhasbeentheambitionofscientistsfordecades.BecausediversityanalysisbycultivationisproblematicforasignificantfractionofBacteriaandArchaea,culture-independentsurveyshavebeendeveloped.Inthepast,themostcommonlyusedapproachwascloningandsequencingofthe16SribosomalRNAgene(rDNA)usingconservedbroad-rangePCRprimers(1).Withtheadventofmassiveparallelsequencingtechnologies,directsequencingofPCRampliconsbecamefeasible(2–4).In2006,Roche’s454GS20pyrosequencing(5)becamethefirsthigh-throughputsequencingtechnologytobesuccessfullyappliedforlargescalebiodiversityanalysisandwaskeytouncoveringthe‘rarebiosphere’(6).Thecontinuousdevelopmentofthetechnology,offeringreadlengthsofupto1000bpnowadays,furtherimprovedthroughputandresolutionof16SrDNAsequencing(7).Sincethen,additionalhigh-throughputsequencingtechnologieshavebecomecommerciallyavailable.TheattractivenessofIllumina(8)liesinthereducedperbasecostsandcomparativelyhighsequencingdepth(9),despitehavingshortreadlengths.WhilethemajoradvantageofIonTorrent(10)areitsrelativelylowcostandrapidsequencingspeed.Furthermore,PacificBioscience(PacBio)nowemploysthe‘single-moleculereal-time’(SMRT)sequencingtechnology,designedtoachieveaveragereadlengthsofmorethan3000bp(11).ForadetailedreviewofsequencingtechnologiespleaserefertoLomanetal.(12).Thereisnodoubtthattherapiddevelopmentofsequencingtechnologieshasopenedanewdimensioninbiodiversityanalysis,butthediversityoftechnologiesalsoaddscomplexitytotheexperimentaldesignofastudy.ThemostcriticalstepforaccuraterDNAampliconanalysisisstillthechoiceofprimers(4,13).Usingsuboptimalprimers,ormoreprecisely,primerpairs,canleadtounder-representation(14)orselectionagainstsinglespeciesorevenwholegroups(15–17).Usinginappropriateprimersconsequentlyleadstoquestionablebiologicalconclusions(17–19).Inthisstudy,175broadrange16SrDNAprimersand512primerpairswereinvestigatedinsilicowithrespecttooverallcoverageandphylumspectrumforBacteriaandArchaeaaswellasampliconlength.Primersequenceswerecomparedwithall37643716S/18SrDNAsequencesavailableintheSILVAnon-redundantreferencedatabase(SSURefNR)release108(20).Forconsistency,allprimerswererenamedaccordingtotheprimernomenclaturesuggestedbyAlmetal.(21).TwopairsofbacterialPCRprimerswereselectedforempiricalevaluationatthefieldstationHelgolandRoads(NorthSea).Finally,theobtainedresultswerecomparedwithdiversityestimatesfrompreviousmetagenomestudies(22).MATERIALSANDMETHODS
Primernomenclature
PrimerswererenamedaccordingtoAlmetal.(21).Eachnameiscomposedofsevendash-separatedparts,describing:thetargetgene,therankofthetargetgroup,thetargetgroup,thetargetpositionwithinthegene,theprimerversion,thetargetstrandandthelengthoftheprimer.Forillustration,thesevenpartscomprisingtheprimername‘S-D-Bact-0338-a-A-18’aretobeinterpretedasfollows:Anindicationofthetargetgene.Inthiscase,‘S’forsmallsubunitrDNA(S);AnindicationofthelargesttaxonomicgrouptargetedbythePCRprimer.Forexample,‘D’fordomainlevel;Anabbreviateddescription,limitedtothreetofiveletters,ofthespecifictaxonomicorphylogeneticgrouptargetedbytheprimer.Forexample,‘Bact’forthedomainBacteria;Afour-digitnumberindicatingthe5′positionofthesensestrand.Forexample,‘0338’standsforstartposition338intheEscherichiacolisystemofnomenclature(23);Asinglelowercaseletterindicatingtheversionoftheprobe.Forexample‘a’forafirstversion;AsingleuppercaseletterindicatingwhethertheprobesequenceisidenticaltotheDNAsensestrand(S)ortotheantisense(A)strand;andAnumberindicatingthelengthofthePCRprimer.18basesintheexample.Nomenclatureforinsilicoevaluation
Inthisstudy,theterm‘coverage’referstothepercentageofmatchesforagiventaxonomicpath.Taxonomicpathswereconsidered‘notcovered’iftheircoveragewasbelow50%.Theterm‘phylumspectrum’referstothenumberofmatchedphyla.Forexample,ifaprimerorprimerpaircoversthemajorityofallphylaitisdescribedashavinga‘largephylumspectrum’.Selectionofprimers
Atotalof175forwardandreverse16SrDNAprimerswerechosenfortheinsilicoevaluation.PrimersequenceswereeitherobtainedfromaliteraturesurveyorprovidedbytheSILVAusercommunityinresponsetoapollontheARB/SILVAmailinglistinJanuary2012(SupplementaryTableS1).Onlyprimerswithanoverallcoverageabove75%foreitherBacteriaorArchaeawereconsideredforprimerpairanalysis.AllprimersareavailableinprobeBase,acomprehensiveonlinedatabaseforrRNA-targetedoligonucleotides,atwww.microbial-ecology.net/probebase/(24).Selectioncriteriaforprimerpairs
Primerpairswerechosenaccordingtoannealingtemperatures,overallcoverageofvariableregionsandampliconlength.AnnealingtemperatureswerecalculatedwithOligoCalc(25).Primerpaircombinationswithannealingtemperaturedifferencesoflessthan5°Cwereacceptedaspairs.Suitableprimerpairswereorganizedintothreedifferentgroups(SupplementaryTableS8):GroupShort(GroupS)generates100–400bpfragments.GroupMiddle(GroupM)generates400–1000bpfragments.GroupLong(GroupL)generatesfragments≥1000bp.Atotalof512primercombinationswereevaluated.Thebest30bacterialprimerpairsineachgroupandallarchaealprimerpairswithacombinedoverallcoverage>70%wereanalyzedindetail.Insilicoevaluationofprimersandprimerpairs
Primerevaluationwasbasedontwodatasets:Firstly,thenon-redundantSILVAReferencedatabase(releaseSSURef108NR)containing376437sequences.TheSILVASSURef108NRwaspreparedfromallSSUsequenceslongerthan1200bpforBacteriaandEukaryotaandlongerthan900bpforArchaea.SequencesarerequiredtohaveaSINA(26)alignmentqualityvaluebetterthan50(20).RedundantsequenceswereremovedbyclusteringwithUCLUST(27)usinga99%identitycriterion.AsecondSSUdatabasewaspreparedfromtheGlobalOceanSurvey(GOS)(28,29)metagenomesusingtheSILVApipeline.AlignmentwasattemptedwithSINAforallGOSreadsandallsequenceswithanalignmentqualityofatleast30andaminimumlengthof300wereretained,yieldingadatasetof10945sequences.Taxonomicclassificationsforeachreadwereappliedasdescribedbelow.PrimermatchingwasexecutedusingtheprobematchfunctionoftheARBPTserver(30)attwolevelsofstringency,allowingzerooronemismatch,respectively.Foreachprimerandstringencylevelthedatabaseentrieswereseparatedintothreegroups:(i)matches;(ii)mismatches;and(iii)unknown.Thematchstatuswasconsideredtobeunknownifnosequencedatawasavailableatthematchpositionoftherespectiveprimer.Furthermore,onlysequencescorrespondingtotheprimerattheintendedpositionwhereconsideredtobematches.Fromthesenumbers,coveragewascomputedasthematchedfractionofentrieseithermatchesormismatches,excludingentriesforwhichthematchstatuswasunknown.Individualcoverageswerecomputedforalltaxa.Whencomputingthecombinedcoverageofforwardandreverseprimerpairs,anentrywasconsideredtohaveunknownmatchstatusifthematchstatusforeitherofthetwoprimerswasunknown.Likewise,thepairwasonlyconsideredtobeamatchifbothprimersmatchedattheintendedmatchposition.DetailedinformationforeachanalysedprimerandprimerpairareprovidedintheSupplementaryMaterialOnline(singleprimer:SupplementaryTablesS2–S7;primerpairs:SupplementaryTablesS9–S38).AllscriptsandSQLqueriesaswellasdatabasedumpsareavailableonlineatwww.arb-silva.de/download/archive/primer_evaluation.Samplingsiteandcollectionofwatersamples
Samplecollectionwascarriedoutaspartofthe‘multiomic’approachoftheMIMAS(MicrobialInteractioninMArineSystems)project(www.mimas-project.de).Surfacewaterwascollectedon11February2009andweeklyfrom31March2009untilOctober2009.Watersamples(totalvolume360l)fromtheKabeltonnesiteatHelgolandRoadsintheNorthSea(54°11.18′N,7°54.00′E)werecollectedatadepthof0.5mandprocessedimmediatelyattheBiologicalStationHelgoland.Thewaterwaspre-filteredthrougha10μmanda3µmpore-sizefilter.Forharvestinga0.2-μm-pore-sizefilterwasused.Ateachtimepoint10land15lofseawaterwerefilteredonto8filtersforgenomicDNAextraction.Allfilterswerestoredat−80°Cuntilfutureusage.DetailscanbefoundinTeelingetal.(22).Inthisstudy,16SrDNApyrotaganalysiswithRoche’s454FLXTitaniumtechnologywasperformedusingsamplesfrom:11February2009,7April2009and14April2009.Resultsfrom16SrDNAdiversityanalysisgainedfrommetagenomestudiesofthesamesamplingdates(22)wereusedforcomparison.DNAextraction
GenomicDNAwasdirectlyextractedfromfiltersasdescribedinZhouetal.(31)withthefollowingmodifications:allextractionstepswereperformedwith50µlproteinaseK(10mg/ml),andafterisopropanolprecipitation,pelletednucleicacidswereobtainedbycentrifugationat50000gfor30minatroomtemperature.ThegenomicDNAwasstoredat−20°CuntilPCRamplificationandmetagenomicsequencingwerecarriedout.Amplification
Persample,twoseparatePCRreactionswereperformedinordertotesttwobacterialprimerpairsfor16SrDNAamplification.Primerpairswere:(i):S-D-Bact-0341-b-S-17,5′-CCTACGGGNGGCWGCAG-3′(32),andS-D-Bact-0785-a-A-21,5′-GACTACHVGGGTATCTAATCC-3(32);and(ii):S-D-Bact-0008-a-S-16,5′-AGAGTTTGATCMTGGC-3′(33),andS-D-Bact-0907-a-A-20,5′-CCGTCAATTCMTTTGAGTTT-3′(34).Thereactionwascarriedoutin50µlvolumescontaining0.3mg/mlBSA(BovineSerumAlbumin),250µMdTNPs,0.5µMofeachprimer,0.02UPhusionHigh-FidelityDNAPolymerase(FinnzymesOY,Espoo,Finland)and5xPhusionHFBuffercontaining1.5mMMgCl2.ThefollowingPCRconditionswereused:initialdenaturationat95°Cfor5min,followedby25cyclesconsistingofdenaturation(95°Cfor40s),annealing(2min)andextension(72°Cfor1min)andafinalextensionstepat72°Cfor7min.Annealingtemperatureforprimerpair(i)wassetat55°Candfor(ii)at44°C.PCRproductswerepurifiedwithaQiaQuickPCRpurificationkit(QIAGEN,Hilden,Germany).ThequantityandqualityoftheextractedDNAwereanalysedbyspectrophotometryusinganND-1000spectrophotometer(NanoDropTechnologies,Wilmington,DE)andbyagarosegelelectrophoresis.ThePCRproductswerestoredat−20°Cforsequencing.Sequencing
ThepyrosequencingreactionswereperformedatLGCGenomicsGmbH,Berlin,Germany.AllsequencingreactionswerebaseduponFLX—Titaniumchemistry(Roche/454LifeSciences,Branford,CT06405,USA;www.454.com)andallmethodswereperformedusingthemanufacturers’protocol.Briefly,genomicDNAfrommetagenomestudies(22)aswellasPCR-amplifiedDNAfragmentswerecheckedforqualityona2%agarosegel.500ngofeachsamplewasthenusedforthesequencinglibrary.Inaminormodificationtotheprotocol,nosizeselectionofthefragmentswasperformed.Thefragmentsweresubjectedtoendrepairandpolishing.AnextraAwasaddedtotheendsofthefragmentsandtheRocheRapidLibraryadaptorswereligatedontothefragmentsasdescribedintheRocheRapidLibraryPreparationManualforGSFLXTitaniumSeries,October2009,Rev.January2010(Roche/454LifeSciences,Branford,CT06405,USA;www.454.com).AftersubsequentemulsionPCRthefragmentlibrarieswereprocessedandsequencedaccordingtotheRocheprotocols.TheresultingsequenceswereprocessedusingthestandardRochesoftwareforbasecalling,trimmingofadaptorsandqualitytrimming(GenomeSequencerFLXSystemSoftwareManualversion2.3,Roche/454LifeSciences,Branford,CT06405,USA;www.454.com).ForPCR-amplifiedDNAfragments,persampletwodistinctPCRreactionsweresequencedon1/8ofpicotiterplate(PTP).RawdatawerestoredasFNAfile.SequencesweresubmittedtoINSDC(EMBL-EBI/ENA,Genbank,DDBJ)withaccessionnumberERP001031.FormetagenomicstwofullPTPspersampleweresequenced.MetagenomesequenceswerepublishedbytheMIMASproject(22)andcanbeobtainedfromINSDCwithaccessionnumberERP001227.Identificationandtaxonomicclassificationof16SrDNAfragments
UnassembledsequencereadsfrombothSSUrRNAgenePCRamplicons(pyrotags)andmetagenomesequencingwerepreprocessed(qualitycontrolandalignment)bythebioinformaticspipelineoftheSILVAproject(20).Briefly,readsshorterthan200ntorwithmorethan2%ofambiguitiesormorethan2%ofhomopolymerswereremoved.RemainingreadsfromampliconsandmetagenomeswerealignedagainsttheSSUrDNAseedoftheSILVAdatabaserelease108(www.arb-silva.de/documentation/background/release-108/)(20)usingSINA(26).Unalignedreadswerenotconsideredindownstreamanalysistoeliminatenon16SrDNAsequences.RemainingPCRampliconswereseparatedbasedonthepresenceofalignednucleotidesatE.colipositionsoftherespectiveprimerbindingsitesinsteadofsearchingfortheprimersequencesitself.Thisstrategyisrobustagainstsequencingerrorswithintheprimersignaturesorincompleteprimersignatures.Thisseparationstrategyworksbecausetheampliconsizeofoneprimerpairissignificantlonger,withoverhangsonboth3′and5′site,comparedwiththeampliconofthesecondprimerpair.Withthisapproachtheneedforbarcodingduringcombinedsequencingof16SpyrotagsderivedfromdifferentPCRreactionsonthesamePTPlanewasavoided.FASTAfilesforeachprimerpairoftheseparatedsamplesareavailableonlineatwww.arb-silva.de/download/archive/primer_evaluation.Readsofthefilteredandseparated16Spyrotagdatasetsaswellasmetagenomesweredereplicated,clusteredandclassifiedonasamplebysamplebasis.Dereplication(identificationofidenticalreadsignoringoverhangs)wasdonewithcd-hit-estofthecd-hitpackage3.1.2(www.bioinformatics.org/cd-hit)usinganidentitycriterionof1.00andawordsizeof8.Remainingsequenceswereclusteredagainwithcd-hit-estusinganidentitycriterionof0.98(wordsize8).Thelongestreadofeachclusterwasusedasareferencefortaxonomicclassification,whichwasdoneusingalocalBLASTsearchagainsttheSILVASSURef108NRdataset(www.arb-silva.de/projects/ssu-ref-nr/)usingblast-2.2.22+(http://blast.ncbi.nlm.nih.gov/Blast.cgi)withdefaultsettings.ThefullSILVAtaxonomicpathofthebestBLASThitwasassignedtothereadsifthevaluefor(percentageofsequenceidentity+percentageofalignmentcoverage)/2wasatleast93.Inthefinalstep,thetaxonomicpathofeachclusterreferencereadwasmappedtotheadditionalreadswithinthecorrespondingclusterplusthecorrespondingreplicates(asidentifiedinthepreviousanalysisstep)tofinallyobtain(semi-)quantitativeinformation(numberofindividualreadsrepresentingataxonomicpath).RawoutputdataareavailableintheSupplementaryMaterialinSupplementaryTablesS48–S50.Adjustmentofthetotalnumberofsequencereadstosmallersubsetsbyrandomre-sampling
Sequencingdepthmayinfringeonthecomparabilityoftheresultingtaxonomicresolution.Toverifythattheresultsderivedfromthe16Spyrotagswerenotanartefactofdeepsequencing,thetotalnumberof16Spyrotagswasreduceduntilroughlyequalamountsofclassifiedpyrotagsandclassifiedmetagenomereadsremainedforeachsample.Threesubsetsofeach16Spyrotagsamplewereadjustedbywithdrawingequalamountsofsequencesrandomlywithoutreplacement.RawoutputdataareavailableintheSupplementaryMaterialOnline(SupplementaryTablesS51–S52).AnanalogueapproachwasdescribedinGilbertetal.(35).RESULTSANDDISCUSSION
Insilicoevaluationof16SrDNAprimers
Theoverallcoverageof175singleprimerswasevaluatedforallthreedomainsoflife(SupplementaryTableS1).AdditionallyforBacteriaandArchaeathephylumspectrumwasinvestigatedwithrespecttozeroandonemismatch(SupplementaryTablesS2–S5).Eukaryotaareonlyconsideredondomainlevel(SupplementaryTablesS5–S6).Atotalof122singleprimerspassedthe50%overallcoveragethresholdwith31,51and1primer(s)specificforthedomainArchaea(A),Bacteria(B)andEukaryota(E),respectively.Atone-mismatch-stringencythetotalnumberincreasedto150eligibleprimers.ForArchaea,primersS-D-Arch-0519-a-A-19(A:91.3%,B:0.1%,E:1.0%)andS-D-Arch-0787-a-A-20(A:87.4%,B:7.8%,E:0.0%)standout.ThisisinlinewitharecentstudybyWangandQian(15).ThehighestoverallcoverageandspecificityforthedomainBacteriawasdetectedfortheprimersS-D-Bact-1061-a-A-17(A:2.9%,B:96.4%,E:0.0%)andS-D-Bact-0564-a-S-15(A:16.3%,B:96.0%,E:0.0%).Furthermore,39primersshowrelativelyhighoverallcoverageformorethanonedomain.Forinstance,S-*-Univ-0515-a-S-19(A:54.5%,B:95.4%,E:92.2%)detectsallthreedomainsandS-D-Bact-0787-b-A-20(A:89.9%,B:90.6%,E:0.0%)targetsBacteriaandArchaeaasrecentlyreported(36).Ithaspreviouslybeenasserted(15)thattheprimersS-*-Univ-0789-a-S-18(A:86.1%,B:6.8%,E:0.0%)andS-*-Univ-0906-a-S-17(A:83.7%,B:0.3%,E:76.8%)targetBacteriaandArchaea.Contrarytothis,withonly6.8%and0.3%overallcoverageofthedomainBacteria,but86.1%and83.7%overallcoverageofthedomainArchaea,respectively,ourresultsconfirmtheoriginalintentionofbothprimerstobespecificforthedomainArchaea(37,38).However,ifonemismatchistolerated,S-*-Univ-0789-a-S-18(A:96.0%,B:93.0%,E:0.0%)targetsArchaeaandBacteria.S-*-Univ-0906-a-S-17(A:93.2%,B:49.8%,E:0.0%)stillfailstopassour50%threshold.TheprimersequenceofS-*-Univ-0779-a-S-20(A:0.0%,B:0.0%,E:0.0%)ismisspelledinWangandQian(15).AllowingonemismatchincreasestheoverallcoveragetoA:64.8%,B:6.8%,E:77.6%andindicatesthatthecorrectprimersequencetargetsArchaeaandEukaryota.AdirectcomparisonofourresultswiththestudiesofHuwsetal.(39)andBakeretal.(14)isnotpossible,astheoverallcoverageoftheprimersisnotgiven.Nossaetal.(1)restrictedtheirevaluationtoasinglehabitat.Walteretal.(36)analysedatotalofonlyfourprimers.Inrespecttodetailedphylumcoverage(SupplementaryTablesS2–S5)itshouldbenotedthatthenumbersofsequencespresentinaphylumaffectsthevaluesforphylumcoverage.Ifthemajorityofasmallphylum(e.g.Caldisericawith61sequences)istargeted,thecoveragewillbehigherthanforamemberrichphylum(e.g.Firmicuteswith84910sequences).Similareffectsoccurforphylainwhichonlyasmallnumberofsequencescontainsequenceinformationattheprimerpositionofinterest.Insilicoevaluationofprimerpairs
Whencombiningforwardandreverseprimers,thebiasofsingleprimerscanaccumulate.Tominimizetheoverallbias,primerswithsimilaroverallcoverageandphylumspectrummustbeused.Usingthe75%overallcoveragecriterion,86singleprimersqualifyforprimerpairanalysis.Inordertogetsuitablecombinationsforthedifferentsequencingtechnologies,primerpairswereorganizedintothreegroupsaccordingtotheirampliconlength(SupplementaryTableS8).GroupS(mall)couldbeofparticularinterestforIllumina(8)andIonTorrent(10)sequencing.PrimerpairsofGroupM(iddle)aresuitableforRoche’s454(40)technology.GroupL(arge)primerpairsareusefulforsequencingmethodssuchasPacBio(11)aswellasforcreatingclassicalclonelibraries.Atotalof512primercombinationswereevaluated.Again,thefocusofthisevaluationwasArchaeaandBacteria.Eukaryotaareonlyconsideredondomainlevel.AssumingthatastandardPCRcantolerateuptotwomismatchesbetweentheprimeranditstarget(1),resultswithonemismatcharealsotakenintoaccount.However,itshouldbenotedthataprimermismatchcanresultinabiasedpictureofthebacterialdiversity(41)andpreferentialamplificationmightleadtounder-representationofimportantmembersofacommunity(14,41).InsilicoevaluationofprimerpairssuitableforIlluminaandIonTorrentsequencing(GroupS)
Only12archaealprimerpairshaveanoverallcoverageabove70%.Thebestresultswithanoverallcoverageof76.8%areobtainedwithS-D-Arch-0349-a-S-17/S-D-Arch-0519-a-A-16(A:76.8%,B:0.0%,E:0.0%)(SupplementaryTableS9).Thispairgeneratesanampliconlengthof185bpwhichspansthehypervariable(HV)regionthree.Theevaluationrevealedthatitmissesfiveoutofeightphyla:AncientArchaealGroup(AAG),GoC-Arc-109-D0-C1-M0,Korarchaeota,MarineHydrothermalVentGroup2(MHVG-2)andNanoarchaeota.Theremainingthreearchaealphylaaredetected(Crenarchaeota,MarineHydrothermalVentGroup1(MHVG-1)andEuryarchaeota).Withonemismatchallowed,overallcoverageforArchaeaincreasestoA:91.0%,B:0.0%,E:0.1%nowcoveringadditionallyKorarchaeotaandMHVG-2(SupplementaryTableS10).However,inthecaseofKorarchaeotadetailedanalysisoftheprimertargetpositionrevealeda3′endmismatchoftheforwardprimer,whichisknowntoaffectamplification.NanoarchaeotaandAAGshowthreemismatches.Moreover,PCRhastotolerateuptofourmismatchesoftheforwardprimertoamplifyGoC-Arc-109-D0-C1-M0.Insummary,S-D-Arch-0349-a-S-17/S-D-Arch-0519-a-A-16generatesshortamplicons,hasacomparativelyhighoverallcoveragebydetectinguptofouroutofeightarchaealphylaandexcellentdomainspecificity.Hence,thisprimerpairshowsthemostpromisingresultsforIlluminaandIonTorrentsequencing.ForBacteria,theprimerpairS-D-Bact-0341-b-S-17/S-D-Bact-0515-a-A-19(A:0.0%,B:91.2%,E:0.0%)hasthehighestoverallcoverage(SupplementaryTableS11).Detailedanalysisrevealsthat10phylaarenotdetected(Armatimonadetes,Chlamydiae,Caldiserica,Hyd24-12,GOUTA4,Kazan-3B-28,SM2F11,aswellasCandidatedivisionsWS6,OP11,TM7andOD1).IfonemismatchistoleratedsomeArchaea(A:44.6%,B:96.7%,E:0.2%)aswellassevenadditionalphylaaredetected(SupplementaryTableS12),butamplificationofCandidatedivisionsOP11andWS6aswellasArmatimonadetesremainsunlikely.Inallthreecases,themismatchpositionoftheforwardprimerislocatedatthe3′end.ForCandidatedivisionsOP11andWS6,thereverseprimerwouldneedtotoleratethreemismatches.ThesefindingsareinlinewiththeconclusionsofBakerandCowan(42),whoclaimthatnodomain-specificprimerexistsorcanbedesignedthatmatchesallbacterial16SrDNAsequences.ThebestcandidateforthedomainBacteriaisS-D-Bact-0564-a-S-15/S-D-Bact-0785-b-A-18.ThisprimerpairhasaslightlyloweroverallcoverageforBacteria(A:14.6%,B:89.0%,E:0.0%)comparedwiththepreviouscandidatebutonlyfailstodetectfourbacterialphyla(Chloroflexi,Elusimicrobia,BHI80-139andCandidatedivisionOP11).Withoneallowedmismatch(A:57.1%,B:95.2%,E:0.0%),onlyCandidatedivisionOP11sequencesremainundetectedduetoa3′endmismatchofbothprimers.Pleasenotethatonemismatchmayalsoleadtoamplificationofarchaeal16SrDNAsequences.BasedonthepromisingphylumspectrumweareinfavourofthisprimerpairincomparisontothepreviousdescribedS-D-Bact-0341-b-S-17/S-D-Bact-0515-a-A-19.Insummary,S-D-Bact-0564-a-S-15/S-D-Bact-0785-b-A-18generatesanampliconof253bpcoveringthefourthHVregionandsatisfieswithahighoverallcoverageandreasonablygooddomainspecificity.Hence,itisrecommendedforBacteria.TwoprimerpairstargetthedomainsBacteriaandArchaea:S-D-Arch-0519-a-S-15/S-D-Bact-0785-b-A-18(A:88%,B:89.1%,E:0.7%)andS-D-Arch-0519-a-S-15/S-D-Bact-0785-a-A-21(A:86.5%,B:87.1%,E:0.0%).Withinthebacterialdomain,thosetwoprimerpairscover49outof59phyla.ThecoverageforChlamydiae,Caldiserica,Chloroflexi,SM2F11,Kazan-3B-28,BHI80-139andCandidatedivisionsWS6,OP11,TM7andOD1isbelow50%.Ifonemismatchistolerated,sevenadditionalphylaaredetectedandoverallcoverageincreasesforS-D-Arch-0519-a-S-15/S-D-Bact-0785-b-A-18(A:94.9%,B:95.1%,E:1.6%)andS-D-Arch-0519-a-S-15/S-D-Bact-0785-a-A-21(A:94.6%,B:94.8%,E:0.7%).AmplificationofCandidatedivisionsWS6,TM7andOP11remainsunlikely.ThemismatchpositionofS-D-Arch-0519-a-S-15islocatedatthe3′endincaseofCandidatedivisionsWS6andTM7.ForCandidatedivisionOP11,bothreverseprimersshowa3′endmismatch.ForArchaea,eachprimerpairfailstodetectfouroutofeightphyla(AAA,MHVG-1andMHVG-2andNanoarchaeota),whichisreducedtoone(Nanoarchaeota)ifonemismatchisallowed.ThecontinuousfailureofprimerstodetectNanoachaeotaisnotsurprising,duetothemajorityofArchaea-specificprimersbeingdesignedpriortothediscoveryoftheNanoarchaeota(14).DetailedanalysisofthemismatchpositionsrevealsoneinternalmismatchforAAA,MHVG-1andMHVG-2butthreemismatchesforNanoarchaeota.AdditionofNanoarchaeota-specificprimers(43)isrecommended.PreviousevaluationshowedS-P-Nano-0008-a-S-16andS-P-Nano-1390-a-A-17tobehighlyspecificforNanoarchaeota(SupplementaryTableS2).Notethattheseprimersgeneratealmostfull-lengthsequences.Insummary,bothprimerpairscanberecommendedforamplification.TheygenerateampliconsspecificforBacteriaandArchaeawithanaveragelengthof278bpthatspanstheHVregionfour.InsilicoevaluationofprimerpairssuitableforsequencingtechnologieslikeRoche’s454(GroupM)
Noarchaeal-specificprimerpairachievesafullphylumspectrum(SupplementaryTableS15).S-D-Arch-0519-a-S-15/S-D-Arch-1041-a-A-18(A:76.6%,B:0.0%,E:0.0%)showsthebestresultswithrespecttoarelativelyhighoverallcoveragecoupledwithahighdomainspecificity.Thisprimerpaircoverstwooutofeightphyla(CrenarchaeotaandEuryarchaeota),butthephylumspectrumincreasesremarkablytosixdetectedphylaifonemismatchisallowed(A:92.8%,B:0.0%,E:0.0%).Detectionofthefouradditionalphyla(AAG,Korarchaeota,MHVGIandMHVGII)islikelyduetoamiddlemismatchpositioninthereverseprimer.AmplificationofGoC-Arc-109-D0-C1-M0andNanoarchaeaotaremainschallengingduetomorethanonemismatch.Insummary,S-D-Arch-0519-a-S-15/S-D-Arch-1041-a-A-18isthemostsuitableprimerpairwitha540bpampliconspanningHVregions4-6andexcellentdomainspecificity.ThefrequentuseofHVregionsixindiversityanalysismakesthispairparticularlyinterestingforcomparativeanalysis(35,44,45).ForthedomainBacteria,severaldomain-specificprimerpairsattainhighoverallcoverage,but27outof30failtodetectmorethan10phyla(SupplementaryTableS17).ThethreebestpairsareS-D-Bact-0341-b-S-17/S-D-Bact-1061-a-A-17(A:0.0%,B:91.9%,E:0.0%),S-D-Bact-0564-a-S-15/S-*Univ-1100-a-A-15(A:8.0%,B:92.7%,E:0.0%)andS-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21(A:0.5%,B:86.2%,E:0.0%).Althoughthefirsttwoshowhigheroverallcoverage,thelatterexhibitsalargerphylumspectrum.S-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21onlyfailstodetectsevenbacterialphyla(Hyd24-12,GOUTA4,Armatimonadetes,Chloroflexi,BHI80-139andCandidatedivisionsOP11andWS6).Ifonemismatchistolerated(A:64.6%,B:94.5%,E:0.1%),amplificationoffouradditionalphylaislikely(Chloroflexi,BHI80-139,Hyd24-12andGOUTA4).However,somearchaealsequencesarealsodetected.DetailedanalysisrevealsthatonlythecoverageforCandidatedivisionOP11remainsbelowthe50%threshold(SupplementaryTableS18).Besidesfourmismatchesforthereverseprimer,themismatchpositionsinbothprimersarelocatedtowardsthe3′end.Moreover,amplificationofArmatimonadetesandCandidatedivisionWS6isunlikelyduetothe3′endmismatchpositionoftheforwardprimer.Althoughnotcoveringthecompletephylumspectrum,thepairS-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21showsthebestcombinationofdomainandphylumcoverageandcanthusberecommendedfor464bpampliconscoveringtheHVregions3–4.S-D-Bact-0785-a-S-18/S-*-Univ-1392-a-A-15(A:72.3%,B:74.1%,E:0.0%)qualifiesasasuitableprimerpairforBacteriaandArchaea.WithnomismatchesitonlyfailstodetectNanoachaeotaandexpandstofullarchaealphylumspectrumifonemismatchistolerated.Detailedanalysisrevealedthatnoneofthemismatchpositionsarelocatedtowardsthe3′end,whichshouldallowamplification.ForBacteria,anoverallcoverageof76.3%isachievedbutthispairfailstodetectninephyla(Chloroflexi,SM2F11,HDB-SIOH1705,BD1-5,EM19,BHI80-139,CandidatedivisionsOP11,SR1,OD1aswellasEpsilonproteobacteria).Allowingonemismatchresultsinanincreasedoverallcoverage(A:79.0%,B:86.1%,E:1.3%)andtheadditionaldetectionofsixphyladuetointernalmismatches.OnlythecoverageofHDB-SIOH17005,SM2F11andCandidatedivisionOP11remainsbelowthe50%threshold.Insummary,withanampliconlengthof608bpanddetectionofHVregions5–8thisprimerpairqualifiestotargetBacteriaandArchaea.Thisdetailedevaluationalsodemonstratesthatreverseandforwardprimerswithindividualhighcoveragedonotautomaticallyqualifyasanoptimalprimerpair.Forinstance,S-D-Bact-0347-a-S-19(A:0.0%,B:86.1%,E:0.0%)andS-D-Bact-0785-a-A-19(A:8.5%,B:86.4%,E:0.0%)havebeendesignedandapprovedbytheHumanMicrobiomeProjectforanalysingtheforegutmicrobiome(1).Basedonpromisingresultswithinthehumanhabitat,theysuggestedthatthisprimerpairmaybeagoodcandidatetoaccessthebacterialdiversityinanyhabitat(1).However,ourevaluationrevealsaloweroverallcoverageofA:0.0%,B:76.5%,E:0.0%anddetectionofonly25outof59bacterialphylaiftheyactasaprimerpair.Evenifonemismatchisallowed(A:0.0%,B:90.6%,E:0.0%)thisprimerpairstillfailstodetect17phyla(Armatimonadetes,Chlamydiae,Dictyoglomi,Planctomycetes,Verrucomicrobia,Spirochaetes,Lentisphaerae,HDB-SIOH1705,LD1-PA38,NPL-UPA2,Hyd24-12andSM2F11,aswellasCandidatedivisionsOP11,WS6,BRC1,OD1,WS3andOP3).InsilicoevaluationofprimerpairssuitableforsequencingtechnologiessuchasPacBioSMRTorclassicalclonelibraries(GroupL)
Forfragments>1000baseswecouldnotfindanarchaealprimerpairwithbothanoverallcoverageofover70%andasatisfyingphylumspectrum(SupplementaryTableS21).Themajoritydetectsonlythetwosequence-richphyla,CrenarchaeotaandEuryarchaeota.S-D-Arch-0349-a-S-17/S-*-Univ-1392-a-A-15(A:65.8%,B:0.0%,E:0.0%)hasthehighestoverallcoverage.Detailedanalysisrevealedthatthispairfailstodetectsixoutofeightphyla(AAG,GoC-Arc-109-D0-C1-M0,Korarchaeota,MHVG-1,MHVG-2andNanoarchaeota)(SupplementaryTableS21).Althoughperformanceincreasesslightlywhenonemismatchisallowed(A:76.0%,B:0.0%,E:0.1%),thecoverageforthreephyla(AAG,GoC-Arc-109-D0-C1-M0andNanoarchaeota)remainsbelow50%(SupplementaryTableS22).Inaddition,a3′mismatchoftheforwardprimerhampersamplificationofKorarchaeota.Insummary,thisprimerpaircannotberecommended.SimilarresultsareobtainedfortheotherarchaealprimerpairsofGroupL.Thebacterialprimerpairsshowmoresatisfyingresults(SupplementaryTableS23).S-D-Bact-0008-c-S-20/S-D-Bact-1391-a-A-17(A:0.1%,B:78.0%,E:0.0%)hasahighoverallcoverageanddetects55outof59phyla.Thefourphylawithbelow-thresholdcoverageareChlamydiae,WCHB1-60,CandidatedivisionSR1andOP11.Ifonemismatchisallowed,overallcoverageincreasestoA:0.1%,B:86.2%,E:0.0%andCandidatedivisionOP11isnowlikelytobedetectedduetoaninternalmismatch.S-D-Bact-0008-c-S-20/S-D-Bact-1046-a-A-19(A:0.0%,B:81.3%,E:0.0%)achievesthehighestoverallcoveragebutfailstodetecteightphyla(S2R-29,SM2F11,Chlamydiae,Thermotogae,WCHB1-60,Kazan-3B-28,EM19,CandidatedivisionOP11andEpsilonproteobacteria).Remarkably,thisismostlycompensatedifonemismatchisallowed.However,amplificationofsomesequencesbelongingtoCandidatedivisionOP11andWHCBI-60isunlikelydueto3′endmismatches.Moreover,thereverseprimerfailstodetectSM2F11duetotwomismatchesofwhichoneislocatedtowardsthe3′end.Chlamydiaeremainsundetectedduetothreeinternalmismatchesoftheforwardprimer.ThepromisingresultsandexcellentdomainspecificityofbothprimerpairsaredepreciatedbythefactthattheyonlyspanHVregions1–6and1–8,respectively.Nevertheless,ifanampliconlengthof<1400bpissufficientweareinfavourofbothprimerpairs.Fornearlyfull-lengthsequences(>1400bp)werecommendS-D-Bact-0008-a-S-16/S-D-Bact-1492-a-A-16(A:0.2%,B:77.1%,E:0.0%).Thisdomain-specificprimerpairspansHVregions1–9andcovers52outof59bacteriaphyla.Themissingphylaare:GAL08,Kazan-3B-28,Chlamydiae,Dictyoglomi,WCHB1-60,MVP-21andCaldiserica.Onemismatch(A:0.2%,B:86.8%,E:0.0%)allowsadditionaldetectionofCaldisericaandDictyoglomiduetoaninternalmismatch.Theremainingfivephylahaveeithermorethantwomismatchesor,incaseofChlamydiae,theforwardprimerhasa3′endmismatch.Inthepast,S-D-Bact-0008-a-S-16/S-D-Bact-1492-a-A-16,whichiscommonlyknownasGM3/GM4,hasbeenintensivelyusedforclonelibrary-basedstudiesfromdifferenthabitats(46–48).Thusplentyofdataforcomparativeanalysisareavailable.However,thehighnumberofsequencesoriginallyobtainedwiththeGM3/GM4pairisalsolikelytohaveartificiallyinflatedthecoveragevaluesweobtained.Ideally,sequencesobtainedwithagivenprimershouldbeexcludedwhenevaluatingthatsameprimer.Insilicore-evaluationofprimerpairsusingaPCRfreemetagenomedatabase
Themajorityofthesequencesinspecialized16S/18SrDNAdatabasessuchasSILVA(20),greengenes(49)orRDPII(50)arearesultofpriorPCRamplification.Inordertocalibrateourpreviousanalysis,re-evaluationoftheresultsusingthepubliclyavailableGlobalOceanSampling(GOS)databasewasperformed.TheinitialGOSdatasetconsistedof6.3billionbpofSangersequencereads(28)andhasrecentlybeenaugmentedbysamplesfromtheAtlanticandIndianOceans(51).Althoughitislimitedtothemarinehabitat,itisthemostcomprehensivedatasetthatprovidesareasonableamountofrelativelylongfragmentsnecessaryforprimerevaluation.Atotalof1068516S/18SrDNAsequenceswereextractedfromtheGOSdataset.95%ofthereadsrangebetween900bpand1200bpinlength;theaveragelengthwas1053bp.However,thebacterialfractionwasdominant,consistingof9965sequences,comparedwithonly290archaealand439eukaryotic16Sand18Ssequences,respectively.ThustheresultsforArchaeaandEukaryotaareuncertainandshouldonlybeseenascomplementaryinformation.Inadditiontothelimitednumberofsequences,onlyasubsetofphylaispresent.Forexample,forArchaea288sequencesbelongtoCrenarchaeota(63sequences)andEuryarchaeota(225sequences).TheremainingtwosequencescouldbeassignedtoAAGandMHVG-1,respectively.ForKorarchaeota,GoC-Arc-109-D0-C1-M0,MHVG-2andNanoarchaeota,nosequencesarepresent.ForthedomainBacteria,the9956readsspan28outof59phyla.ThemajoritybelongtoActinobacteria(1006sequences),Bacteroidetes(785sequences),Cyanobacteria(805sequences)andProteobacteria(6655sequences).OthermemberrichphylasuchasFirmicutes(167sequences)andAcidobacteria(29sequences)areonlypresentinlownumbers.Thelackofafullphylumspectrumclearlylimitsthere-evaluationandpreventsdirectcomparisonswithourpreviousresults.Themuchlowerandalsovaryingnumberofsequencesintherespectivetargetregionsaffectstheresultsaswell.FurthermoreprimerpairsofGroupLhadtobeexcludedfromthere-evaluationduetothelackofsufficientnumbersoflongsequences.InthepreviousevaluationforGroupS,thearchaealprimerpairS-D-Arch-0349-a-S-17/S-D-Arch-0519-a-A-16(A:76.8%,B0.0%,E:0.0%)wasproposedasasuitablepairforampliconsequencingof<400bases.Re-evaluationbasedontheGOSdatasetagainyieldedthehighestoverallcoverage(A:74.5%,B:0.0%,E:1.2%)andexcellentdomainspecificity.TherecommendedbacterialprimerpairS-D-Bact-0564-a-S-15/S-D-Bact-0785-b-A-18(A:0.0%,B:83.4%,E:0.0%)alsoperformswell.Toleratingonemismatchstillconfirmsdomainspecificity(A:10.6%,B:86.2%,E:0.0%).Unfortunately,detailedcomparisononphylumlevelproveddifficult.Forexample,withintheSILVAdatabase,84910Firmicutessequencesofsufficientlengtharepresentand91.8%ofthesearecoveredbyS-D-Bact-0564-a-S-15/S-D-Bact-0785-b-A-18.UsingtheGOSdataset,onlytwosequencesfromFirmicutesareavailable.Promisingtrendscouldalsobeobservedforthetwoprimerpairstargetingboth,ArchaeaandBacteria.Inparticular,S-D-Arch-0519-a-S-15/S-D-Bact-0785-b-A-18standsoutwithhighoverallcoverage(A:76.5%,B:83.4%,E:1.9%),whichincreasesslightlyifonemismatchisallowed(A:81.8%,B:86.5%,E:1.9%).ForGroupM,only32sequencesofsufficientlengthwereavailabletore-evaluatetherecommendedarchaealprimerpairS-D-Arch-0519-a-S-15/S-D-Arch-1041-a-A-18.ThustheArchaeaprimerpairswereexcludedfromfurthervalidation.Withonaverage2600availablebacterialsequencesforre-evaluatingGroupM,theconditionswereslightlybetter.Asinthepreviousevaluation,severalprimerpairsshowhighoverallcoverage:S-D-Bact-0564-a-S-15/S-*-Univ-1100-a-A-15provesitssuitabilitywithahighdomain-specificandoverallcoverage(A:0.0%,B:76.2%,E:0.0%).OverallcoverageforBacteriaincreasesupto80.2%,ifonemismatchistolerated(A:2.3%,B:80.2%,E:0.0%).Incontrast,S-D-Bact-0341-b-S-17/S-D-Bact-1061-a-A-17(A:0.0%,B:58.9%,E:0.0%)failstomatchthepreviousresults,whichcouldbeaconsequenceofthespecificdataset.Evenallowingonemismatchdoesnotachievesatisfyingresults(A:0.0%,B:64.8%,E:0.0%).Atfirstglance,similarresultswereobtainedforS-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21(A:0.0%,B:43.1%,E:0.0%).However,consideringonemismatchtheoverallcoveragesignificantlyincreasedtoA:58.2%,B:70.9%,E:0.0%.There-evaluationoftheprimerpairsbasedontheGOSdataset(SupplementaryTablesS27–S38)showsthat,despitetherelativelylargedatasetsize,itstilllacksresolutionpower,especiallywhenconsideringaspecificgene.Unfortunately,thedataobtainedbyotherlargescaleprojects,suchastheEarthMicrobiomeProject(52),isoflittleuseforprimerevaluationduetotheircosteffective,butlength-limitedsequencingstrategy.Duetotheinherentriskofcreatingchimericsequenceswewouldnotconsiderassemblyasolutiontothislimitation.ShouldtheerrorrateoflongreadsequencingtechnologiessuchasPacBiobesignificantlyreduced,datafrommetagenomicstudiesrelyingonthesetechnologieswouldbecomeavaluableresourceforrevisitingtheprimersensitivityissue.Insummary,ifasufficientamountformetagenomic16SrDNAsequenceswereavailable,thepreviousprimerpairrecommendationscouldbeconfirmed.ExperimentalevaluationoftheprimerpairS-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21
TheprimerpairS-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21(GroupM)wasappliedtoDNAextractedfromatimeseriesofthreemarineenvironmentalsamplesatHelgolandRoads.Forsimplification,wewillrefertotheobtainedreadsas‘16Spyrotags’.InthecourseoftheMIMASproject,metagenomicanalysiswasperformedusingmarinesamplesfromthesamesiteandtimepoints(22).Theresultsfromthemetagenomic-baseddiversitystudiesareusedtoevaluatetheaccuracyofeachprimerpairbycomparingthetaxonomicclassifications.Onaverage,59700sequenceswereobtainedpersamplingoccasion,ofwhich52400couldbeassignedas16Spyrotags(88.4%)(SupplementaryTableS39).Therelativelyhighlossisduetothestringentqualitychecksusedfortheidentificationandtaxonomicclassificationof16SrDNAfragments.Incontrast,metagenomeanalysisresultedonaveragein2109000sequences(22)persamplingoccasion,butonly1600sequences(0.1%)qualifiedas16SrDNAgenefragments.Theresultsofthe16SpyrotaganalysisshowthatthebacterialcommunityisdominatedbyAlphaproteobacteria,BacteroidetesandGammaproteobacteria(Figure1AandSupplementaryTableS40).Accordingtotheinsilicoevaluation,forprimerpairS-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21highcoverageofthesethreegroupsareexpected(Bacteroidetes:89.2%,Alphaproteobacteria:81.4%,Gammaproteobacteria:90.6%).Allowingonemismatchtheoverallcoverageincreasestoupto95%foreachgroup.Theresultsfromthe16Spyrotagsalsorevealedasuccessionoftherelativeabundances.Bacteroidetespeakedon7April2009,butwerestillabundanton14April2009.ForAlphaproteobacteriamoresequencescouldbedetectedinwinteron11February2009.Incontrast,therelativeabundanceofGammaproteobacteriaincreasedon14April2009.Thesametrendswereobservedinthemetagenomes(Figure1BandSupplementaryTableS41)(22).Toverifythattheresultsderivedfromthe16Spyrotagsarenotanartefactofdeepsequencing,thetotalnumberofreadswasadjustedtosmallersubsetsofaround2000sequencesbyrandomre-sampling.Detailedanalysisofthesere-sampledsubsetsconfirmedtheresults(SupplementaryTableS42).
Figure1.OpeninnewtabDownloadslideTaxonomicdistributionof16SrRNAgenesequencesgainedfromatimeseriesofthreedifferentsurfacewatersamplesatHelgolandRoadsintheNorthSea,(A)16SpyrotagsgeneratedfromPCRandsequencedwithRoche’s454pyrosequencing(relativeabundance,percentageoftotalcounts)(B)16Ssequencesgainedfrommetagenomestudies(relativeabundance,percentageoftotalcounts).Figure1.OpeninnewtabDownloadslideTaxonomicdistributionof16SrRNAgenesequencesgainedfromatimeseriesofthreedifferentsurfacewatersamplesatHelgolandRoadsintheNorthSea,(A)16SpyrotagsgeneratedfromPCRandsequencedwithRoche’s454pyrosequencing(relativeabundance,percentageoftotalcounts)(B)16Ssequencesgainedfrommetagenomestudies(relativeabundance,percentageoftotalcounts).16Spyrotaganalysisprovidesanenhancedresolutionuptothegrouporgenuslevel.Sixrelativelyabundanttaxonomicgroupsandgenera(Formosa,Polaribacter,SAR11cladesurface1,NAC11-7lineage,ReinekeaandSAR92clade)havebeenexaminedindetail(SupplementaryFigureS1AandSupplementaryTableS43).NoteworthyistheFormosapeakon7April2009andthepresenceofReinekeaonlyon14April2009.Bothresultsweresupportedbydiversitystudiesfromthecorrespondingmetagenomes(SupplementaryFigureS1BandSupplementaryTableS44).Again,there-sampled16Spyrotagsubsetsconfirmedthattheresultsarenotanartefactofdeepsequencing(SupplementaryTableS45).Inaddition,itisinterestingtonotethatcorrespondingmetaproteomestudiesdescribedinTeelingetal.(22)reflectthesamesuccessionofthebacterialcommunityontheproteinlevel.Consideringtheinsilicoevaluation,S-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21shouldfailtodetectSAR11cladesurface1(0.7%).However,experimentalevaluationclearlyshowsthattheprimerpairisabletoamplifythistaxonomicgroup.Thiscanbeexplainedbytheincreasedcoverageofupto97%ifonemismatchisallowed.Acloserlookattheprimertargetpositionofthereverseprimerrevealsaninternalmismatchpositiontowardsthe5′end.TheresultsdemonstratethatS-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21providesagoodrepresentationofthebacterialdiversitydowntogenusandgrouplevelandillustratesthataninternalmismatchtowardsthe5′endcanbetoleratedbystandardPCR.Totesttheassumptionthatasuboptimalprimerpairmightresultinabiasedpictureofthebacterialdiversity,S-D-Bact-0008-a-S-16/S-D-Bact-0907-a-A-20wasappliedtothesamesamples.Thisprimerpairwaschosenduetoitsrelativelyhighoverallcoverage(A:0.0%,B:75.1%,E:0.0%)butdistinctlylowerphylumspectrum.Basedontheinsilicoevaluationitshouldfailtodetect18bacterialphyla(Aquificae,BD1-5,BHI80-139,Chlamydiae,Dictyoglomi,EM19,Lentisphaerae,SM2F11,Thermotogae,Tenericutes,Verrucomicrobia,WCHB1-60andCandidatedivisionsTM7,WS6,OD1,SR1andOP11).WithrelativelyhighcoverageofBacteroidetes(77.6%),Alphaproteobacteria(71.3%)andGammaproteobacteria(80.5%)insilicoevaluationandexperimentaldataconfirmthatthisprimerpairisabletodetectthesamedominanttaxonomicgroups(SupplementaryFigureS2andSupplementaryTableS46).However,incomparisonwiththe16SpyrotagsgeneratedwithS-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21andmetagenomestudiesAlphaproteobacteriaappeartobemoreabundantthroughoutallsamples.Bacteroidetes,ontheotherhand,areunder-represented.Asimilarbiascanbefoundonthegrouplevel(SupplementaryFigureS3andSupplementaryTableS47).UseofthisprimerpairindicatesahigherrelativeabundanceofAlphaproteobacteriaSAR11cladesurface1aswellasNAC11-7lineageon7April2009and14April2009.Inturn,particularlythegenusFormosaislessprominent.Thisisinlinewiththeresultsfromtheinsilicoevaluation,whichshowsthatS-D-Bact-0008-a-S-16/S-D-Bact-0907-a-A-20onlydetects52.9%oftheFormosasequences.Evenoneallowedmismatchresultsonlyinanincreaseof9%upto61.9%.Acloserlookrevealsamismatchofthereverseprimertowardsthe3′endforseveralFormosasequences.AlthoughS-D-Bact-0008-a-S-16/S-D-Bact-0907-a-A-20isabletodetectallmajorgroups,abiasintherelativeabundancesaswellascommunitystructureisclearlyconfirmedbytheexperimentaldata(Figure1andSupplementaryFiguresS1–S3).Thissupportsourassumptionthattheoverallcoverageneedalwaystobeconsideredincombinationwiththephylumspectrum.Detailedanalysisofthemismatchpositionshouldalsobetakenintoaccount.Nevertheless,theexperimentalresultsstronglyindicatethatinsilicoevaluationcanserveasaguidelineforchoosingthemostsuitableprimerpair.CONCLUSIONS
Theadventofnewsequencingmethodshasbeenaparadigmshiftformolecularecologyandespeciallymicrobialdiversityanalysisusingmarkergenes.Therapidadoptionofthenewtechniquescausedabackloginproperevaluationoftheprimersusedfordiversitysurveys.Ourstudyshowsthatevencommonlyusedsingleprimersexhibitsignificantdifferencesinoverallcoverageandphylumspectrum.Consequently,primerpairsneedtobecarefullyselectedtoavoidaccumulativebias.Outofthe175primersand512primerpairschecked,only10canberecommendedasbroadrangeprimers.Althoughnoneofthemareperfect,andespeciallyfortheArchaeawerecommendthedesignofadditionalprimers,theexperimentalvalidationshowsthatagoodcombinationofprimersapproximatePCR-freemetagenomicapproacheswithrespecttocommunitystructureandrelativeabundances.Theexperimentalresultsconfirmthatsingleinternalmismatches,whenlocatedtowardsthe5′end,aretoleratedintheamplificationprocess.Re-inspectionoftheprimersusingGOSmetagenomeswasfoundtobeareasonableapproachfordeterminingpossibleprimerbiasinthepublicrDNArepositories.However,theincompletephylumspectrumaswellasthecomparativelysmalldatasetsizewithrespectto16SrRNAgenesintheGOSmetagenomesdidnotallowforanin-depthre-evaluation.Forexample,GroupMprimerpairS-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21,whichwerecommendedbasedontheSSURef108NRresults,failstodetectmajorgroupsintheGOSdataset,yetexcelsintheexperimentalevaluation.Thisdemonstratesthevalidityofusingcomprehensive,non-redundantdatasetsliketheSILVASSURef108NRfordetailedevaluationofprobesandprimers.WewouldliketonotethattheSILVAprojecthaspreparedanonlineserviceforthispurposeatwww.arb-silva.de/search/testprime,whichismodelledafterourevaluationmethodandallowsinspectionofper-taxoncoveragesforindividualprimerpairs.Furthermore,allprimers,includingbibliographicinformationandinformationonspecificityandoverallcoverage,havebeenaddedtoprobeBase.Theavailabilityoftheevaluatedprimersinacentralandpublicallyaccessiblerepositoryplustheonlineprimerevaluationtoolshouldfacilitatethesearchfor,andtheevaluationandselectionof,suitableprimersinfuturestudies.AVAILABILITY
Supplementaryfilesareavailableatwww.arb-silva.de/download/archive/primer_evaluation/.SUPPLEMENTARYDATA
SupplementaryDataareavailableatNAROnline:SupplementaryTables1–52andSupplementaryFigures1–3.FUNDING
MaxPlanckSocietyandtheFederalMinistryofEducationandResearchGermany[03F0480D].ResearchinthelabofM.H.isfundedthroughgrantsfromtheAustrianResearchFund[Y277-B03];theEuropeanResearchCouncil[StartingGrantEVOCHLAMY281633].Fundingforopenaccesscharge:MaxPlanckSociety.Conflictofintereststatement.Nonedeclared.ACKNOWLEDGEMENTS
WeacknowledgeJackA.Gilbert(ArgonneNationalLaboratory,Argonne,IL,USA),BernhardM.Fuchs(MaxPlanckInstitute,Bremen,Germany)andChristineKlockowforcriticaldiscussionofthismanuscript.E.KaramehmedovicandM.Meinersforhelpingwiththelaboratorywork.G.GerdsandA.WichelsfromtheAlfredWegnerInstitute(Bremerhaven,Germany)forsupportingandperformingthewatersampling.HannahMarchant,ElizabethRobertson,MiraOkshevskyandMarioSchimakforcriticalreadingofthemanuscript.REFERENCES
1NossaC.W., OberdorfW.E., YangL., AasJ.A., PasterB.J., DesantisT.Z., BrodieE.L., MalamudD., PolesM.A., PeiZ.. Designof16SrRNAgeneprimersfor454pyrosequencingofthehumanforegutmicrobiome, WJG, 2010, vol. 16 (pg. 4135-4144)GoogleScholarCrossrefSearchADSPubMedWorldCat 2MediniD., SerrutoD., ParkhillJ., RelmanD.A., DonatiC., MoxonR., FalkowS., RappuoliR.. Microbiologyinthepost-genomicera, Nat.Rev.Microbiol., 2008, vol. 6 (pg. 419-430)GoogleScholarCrossrefSearchADSPubMedWorldCat 3MardisE.R.. Theimpactofnext-generationsequencingtechnologyongenetics, TrendsGenet., 2008, vol. 24 (pg. 133-141)GoogleScholarCrossrefSearchADSPubMedWorldCat 4ArmougomF., RaoultD.. Exploringmicrobialdiversityusing16SrRNAhigh-throughputmethods, J.Comput.Sci.Syst.Biol., 2009, vol. 2 (pg. 74-92)GoogleScholarCrossrefSearchADSWorldCat 5MarguliesM., EgholmM., AltmanW.E., AttiyaS., BaderJ.S., BembenL.A., BerkaJ., BravermanM.S., ChenY.J., ChenZ., etal. Genomesequencinginmicrofabricatedhigh-densitypicolitrereactors, Nature, 2005, vol. 437 (pg. 376-380)GoogleScholarCrossrefSearchADSPubMedWorldCat 6SoginM.L., MorrisonH.G., HuberJ.A., MarkWelchD., HuseS.M., NealP.R., ArrietaJ.M., HerndlG.J.. Microbialdiversityinthedeepseaandtheunderexplored‘rarebiosphere’, Proc.NatlAcad.Sci.USA, 2006, vol. 103 (pg. 12115-12120)GoogleScholarCrossrefSearchADSWorldCat 7LiuZ., LozuponeC., HamadyM., BushmanF.D., KnightR.. Shortpyrosequencingreadssufficeforaccuratemicrobialcommunityanalysis, NucleicAcidsRes, 2007, vol. 35 pg. e120 GoogleScholarCrossrefSearchADSPubMedWorldCat 8BennettS.. SolexaLtd, Pharmacogenomics, 2004, vol. 5 (pg. 433-438)GoogleScholarCrossrefSearchADSPubMedWorldCat 9CaporasoJ.G., LauberC.L., WaltersW.A., Berg-LyonsD., HuntleyJ., FiererN., OwensS.M., BetleyJ., FraserL., BauerM., etal. Ultra-high-throughputmicrobialcommunityanalysisontheIlluminaHiSeqandMiSeqplatforms, ISMEJ, 2012, vol. 6 (pg. 1621-1624)GoogleScholarCrossrefSearchADSPubMedWorldCat 10RothbergJ.M., HinzW., RearickT.M., SchultzJ., MileskiW., DaveyM., LeamonJ.H., JohnsonK., MilgrewM.J., EdwardsM., etal. Anintegratedsemiconductordeviceenablingnon-opticalgenomesequencing, Nature, 2011, vol. 475 (pg. 348-352)GoogleScholarCrossrefSearchADSPubMedWorldCat 11EidJ., FehrA., GrayJ., LuongK., LyleJ., OttoG., PelusoP., RankD., BaybayanP., BettmanB., etal. Real-timeDNAsequencingfromsinglepolymerasemolecules, Science, 2009, vol. 323 (pg. 133-138)GoogleScholarCrossrefSearchADSPubMedWorldCat 12LomanN.J., MisraR.V., DallmanT.J., ConstantinidouC., GharbiaS.E., WainJ., PallenM.J.. Performancecomparisonofbenchtophigh-throughputsequencingplatforms, Nat.Biotechnol, 2012, vol. 30 (pg. 434-439)GoogleScholarCrossrefSearchADSPubMedWorldCat 13SchlossP.D., GeversD., WestcottS.L.. ReducingtheeffectsofPCRamplificationandsequencingartifactson16SrRNA-basedstudies, PLoSONE, 2011, vol. 6 pg. e27310 GoogleScholarCrossrefSearchADSPubMedWorldCat 14BakerG.C., SmithJ.J., CowanD.A.. Reviewandre-analysisofdomain-specific16Sprimers, J.Microbiol.Methods, 2003, vol. 55 (pg. 541-555)GoogleScholarCrossrefSearchADSPubMedWorldCat 15WangY., QianP.Y.. Conservativefragmentsinbacterial16SrRNAgenesandprimerdesignfor16SribosomalDNAampliconsinmetagenomicstudies, PLoSONE, 2009, vol. 4 pg. e7401 GoogleScholarCrossrefSearchADSPubMedWorldCat 16TringeS.G., HugenholtzP.. Arenaissanceforthepioneering16SrRNAgene, Curr.Opin.Microbiol., 2008, vol. 11 (pg. 442-446)GoogleScholarCrossrefSearchADSPubMedWorldCat 17HamadyM., KnightR.. Microbialcommunityprofilingforhumanmicrobiomeprojects:tools,techniques,andchallenges, Genome.Res., 2009, vol. 19 (pg. 1141-1152)GoogleScholarCrossrefSearchADSPubMedWorldCat 18AnderssonA.F., LindbergM., JakobssonH., BäckhedF., NyrénP., ngstrandL.. Comparativeanalysisofhumangutmicrobiotabybarcodedpyrosequencing, PLoSONE, 2008, vol. 3 pg. e2836 GoogleScholarCrossrefSearchADSPubMedWorldCat 19LiuZ., DeSantisT.Z., AndersenG.L., KnightR.. Accuratetaxonomyassignmentsfrom16SrRNAsequencesproducedbyhighlyparallelpyrosequencers, NucleicAcidsRes., 2008, vol. 36 pg. e120 GoogleScholarCrossrefSearchADSPubMedWorldCat 20PruesseE., QuastC., KnittelK., FuchsB.M., LudwigW., PepliesJ., GlöcknerF.O.. SILVA:acomprehensiveonlineresourceforqualitycheckedandalignedribosomalRNAsequencedatacompatiblewithARB, NucleicAcidsRes., 2007, vol. 35 (pg. 7188-7196)GoogleScholarCrossrefSearchADSPubMedWorldCat 21AlmE.W., OertherD.B., LarsenN., StahlD.A., RaskinL.. Theoligonucleotideprobedatabase, Appl.Environ.Microbiol., 1996, vol. 62 (pg. 3557-3559)GoogleScholarPubMedOpenURLPlaceholderTextWorldCat 22TeelingH., FuchsB.M., BecherD., KlockowC., GardebrechtA., BennkeC.M., KassabgyM., HuangS., MannA.J., WaldmannJ., etal. Substrate-controlledsuccessionofmarinebacterioplanktonpopulationsinducedbyaphytoplanktonbloom, Science, 2012, vol. 336 (pg. 608-611)GoogleScholarCrossrefSearchADSPubMedWorldCat 23BrosiusJ., PalmerM.L., KennedyP.J., NollerH.F.. Completenucleotidesequenceofa16SribosomalRNAgenefromEscherichiacoli, Proc.NatlAcad.Sci.USA, 1978, vol. 75 (pg. 4801-4805)GoogleScholarCrossrefSearchADSWorldCat 24LoyA., MaixnerF., WagnerM., HornM.. probeBase–anonlineresourceforrRNA-targetedoligonucleotideprobes:newfeatures2007, NucleicAcidsRes., 2007, vol. 35 (pg. D800-D804)GoogleScholarCrossrefSearchADSPubMedWorldCat 25KibbeW.A.. OligoCalc:anonlineoligonucleotidepropertiescalculator, NucleicAcidsRes., 2007, vol. 35 (pg. W43-W46)GoogleScholarCrossrefSearchADSPubMedWorldCat 26PruesseE., PepliesJ., GlöcknerF.O.. SINA:accuratehighthroughputmultiplesequencealignmentofribosomalRNAgenes, Bioinformatics, 2012, vol. 28 (pg. 1823-1829)GoogleScholarCrossrefSearchADSPubMedWorldCat 27EdgarR.C.. SearchandclusteringordersofmagnitudefasterthanBLAST, Bioinformatics, 2010, vol. 26 (pg. 2460-2461)GoogleScholarCrossrefSearchADSPubMedWorldCat 28RuschD.B., HalpernA.L., SuttonG., HeidelbergK.B., WilliamsonS., YoosephS., WuD., EisenJ.A., HoffmanJ.M., RemingtonK., etal. TheSorcererIIGlobalOceanSamplingexpedition:northwestAtlanticthrougheasterntropicalPacific, PLoSONE, 2007, vol. 5 pg. e77 GoogleScholarCrossrefSearchADSWorldCat 29YoosephS., SuttonG., RuschD.B., HalpernA.L., WilliamsonS.J., RemingtonK., EisenJ.A., HeidelbergK.B., ManningG., LiW., etal. TheSorcererIIGlobalOceanSamplingexpedition:expandingtheuniverseofproteinfamilies, PLoSBiol., 2007, vol. 5 pg. e16 GoogleScholarCrossrefSearchADSPubMedWorldCat 30LudwigW., StrunkO., WestramR., RichterL., MeierH., KumarY., BuchnerA., LaiT., SteppiS., JobbG., etal. ARB:asoftwareenvironmentforsequencedata, NucleicAcidsRes., 2004, vol. 32 (pg. 1363-1371)GoogleScholarCrossrefSearchADSPubMedWorldCat 31ZhouJ., BrunsM.A., TiedjeJ.M.. DNArecoveryfromsoilsofdiversecomposition, Appl.Environ.Microbiol., 1996, vol. 62 (pg. 316-322)GoogleScholarPubMedOpenURLPlaceholderTextWorldCat 32HerlemannD.P.R., LabrenzM., JuergensK., BertilssonS., WaniekJ.J., AnderrsonA.F.. Transitioninbacterialcommunitiesalongthe2000kmsalinitygradientoftheBalticSea, ISMEJ, 2011, vol. 5 (pg. 1571-1579)GoogleScholarCrossrefSearchADSPubMedWorldCat 33MuyzerG., deWaalE.C., UitterlindenA.G.. Profilingofcomplexmicrobialpopulationsbydenaturinggradientgelelectrophoresisanalysisofpolymerasechainreaction-amplifiedgenescodingfor16SrRNA, Appl.Environ.Microbiol., 1993, vol. 59 (pg. 695-700)GoogleScholarPubMedOpenURLPlaceholderTextWorldCat 34MuyzerG., BrinkhoffT., NuebelU., SantegoedsC., SchaeferH., WaverC.. AkkermansA.D.L., vanElsasJ.D., deBruijnF.J.. Denaturinggradientgelelectrophoresis(DGGE)inmicrobialecology, MolecularMicrobialEcologyManual, 1998Dordrecht,TheNetherlandsKluwerAcademicPublishers(pg. 1-27)GoogleScholarGooglePreviewOpenURLPlaceholderTextWorldCatCOPAC 35GilbertJ.A., FieldD., SwiftP., ThomasS., CummingsD., TempertonB., WeynbergK., HuseS., HughesM., JointI., etal. Thetaxonomicandfunctionaldiversityofmicrobesatatemperatecoastalsite:a'multi-omic'studyofseasonalanddieltemporalvariation, PLoSONE, 2010, vol. 5 pg. e15545 GoogleScholarCrossrefSearchADSPubMedWorldCat 36WaltersW.A., CaporasoJ.G., LauberC.L., Berg-LyonsD., FiererN., KnightR.. PrimerProspector:denovodesignandtaxonomicanalysisofbarcodedPCRprimers, Bioinformatics, 2011, vol. 27 (pg. 1159-1161)GoogleScholarCrossrefSearchADSPubMedWorldCat 37BarnsS.M., FundygaR.E., JeffriesM.W., PaceN.R.. RemarkablearchaealdiversitydetectedinaYellowstoneNationalParkhotspringenvironment, Proc.NatlAcad.Sci.USA, 1994, vol. 91 (pg. 1609-1613)GoogleScholarCrossrefSearchADSWorldCat 38ReysenbachA.L., PaceN.R.. RobbF.T., PlaceA.R.. , Archaea:ALaboratoryManual—Thermophiles.CSHLP.Protocol16, 1995(pg. 101-107) 39HuwsS.A., EdwardsJ.E., KimE.J., ScollanN.D.. Specificityandsensitivityofeubacterialprimersutilizedformolecularprofilingofbacteriawithincomplexmicrobialecosystems, J.Microbiol.Methods, 2007, vol. 70 (pg. 565-569)GoogleScholarCrossrefSearchADSPubMedWorldCat 40DroegeM., HillB.. ThegenomesequencerFLXsystem–longerreads,moreapplications,straightforwardbioinformaticsandmorecompletedatasets, J.Biotechnol, 2008, vol. 136 (pg. 3-10)GoogleScholarCrossrefSearchADSPubMedWorldCat 41SiposR., SzékelyA.J., PalatinszkyM., RévészS., MárialigetiK., NikolauszM.. Effectofprimermismatch,annealingtemperatureandPCRcyclenumberon16SrRNAgene-targettingbacterialcommunityanalysis, FEMSMicrobiol.Ecol., 2007, vol. 60 (pg. 341-350)GoogleScholarCrossrefSearchADSPubMedWorldCat 42BakerG.C., CowanD.A.. 16SrDNAprimersandtheunbiasedassessmentofthermophilediversity, Biochem.Soc.Trans., 2004, vol. 32 (pg. 218-221)GoogleScholarCrossrefSearchADSPubMedWorldCat 43HuberH., HohnM.J., RachelR., FuchsT., WimmerV.C., StetterK.O.. AnewphylumofArchaearepresentedbyananosizedhyperthermophilicsymbiont, Nature, 2002, vol. 417 (pg. 63-67)GoogleScholarCrossrefSearchADSPubMedWorldCat 44HuseS.M., DethlefsenL., HuberJ.A., MarkWelchD., RelmanD.A., SoginM.L.. ExploringmicrobialdiversityandtaxonomyusingSSUrRNAhypervariabletagsequencing, PLoSGenet., 2008, vol. 4 pg. e1000255 GoogleScholarCrossrefSearchADSPubMedWorldCat 45McClimentE.A., NelsonC.E., CarlsonC.A., AlldredgeA.L., WittingJ., Amaral-ZettlerL.A.. Anall-taxonmicrobialinventoryoftheMooreacoralreefecosystem, ISMEJ., 2012, vol. 6 (pg. 309-319)GoogleScholarCrossrefSearchADSPubMedWorldCat 46AbedR.M., Al-ThukairA., deBeerD.. Bacterialdiversityofacyanobacterialmatdegradingpetroleumcompoundsatelevatedsalinitiesandtemperatures, FEMSMicrobiol.Ecol., 2006, vol. 57 (pg. 290-301)GoogleScholarCrossrefSearchADSPubMedWorldCat 47LiebnerS., HarderJ., WagnerD.. BacterialdiversityandcommunitystructureinpolygonaltundrasoilsfromSamoylovIsland,LenaDelta,Siberia, Int.Microbiol., 2008, vol. 11 (pg. 195-202)GoogleScholarPubMedOpenURLPlaceholderTextWorldCat 48SchauerR., BienholdC., RametteA., HarderJ.. Bacterialdiversityandbiogeographyindeep-seasurfacesedimentsoftheSouthAtlanticOcean, ISMEJ., 2010, vol. 4 (pg. 159-170)GoogleScholarCrossrefSearchADSPubMedWorldCat 49DeSantisT.Z., HugenholtzP., LarsenN., RojasM., BrodieE.L., KellerK., HuberT., DaleviD., HuP., AndersenG.L.. Greengenes,achimera-checked16SrRNAgenedatabaseandworkbenchcompatiblewithARB, Appl.Environ.Microbiol., 2006, vol. 72 (pg. 5069-5072)GoogleScholarCrossrefSearchADSPubMedWorldCat 50ColeJ.R., ChaiB., FarrisR.J., WangQ., Kulam-Syed-MohideenA.S., McGarrellD.M., BandelaA.M., CardenasE., GarrityG.M., TiedjeJ.M.. Theribosomaldatabaseproject(RDP-II):introducingmyRDPspaceandqualitycontrolledpublicdata, NucleicAcidsRes., 2007, vol. 35 (pg. D169-D172)GoogleScholarCrossrefSearchADSPubMedWorldCat 51YoosephS., NealsonK.H., RuschD.B., McCrowJ.P., DupontC.L., KimM., JohnsonJ., MontgomeryR., FerrieraS., BeesonK., etal. Genomicandfunctionaladaptationinsurfaceoceanplanktonicprokaryotes, Nature, 2010, vol. 468 (pg. 60-66)GoogleScholarCrossrefSearchADSPubMedWorldCat 52GilbertJ.A., MeyerF., JanssonJ., GordonJ., PaceN., TiedjeJ., LeyR., FiererN., FieldD., KyrpidesN., etal. TheEarthMicrobiomeProject:meetingreportofthe“1stEMPmeetingonsampleselectionandacquisition”atArgonneNationalLaboratoryOctober6th2010, Stand.GenomicSci., 2010, vol. 3 (pg. 249-253)GoogleScholarCrossrefSearchADSPubMedWorldCat
©TheAuthor(s)2012.PublishedbyOxfordUniversityPress.ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.org/licenses/by-nc/3.0/),whichpermitsnon-commercialreuse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.Forcommercialre-use,[email protected].©TheAuthor(s)2012.PublishedbyOxfordUniversityPress.
Subject
Nucleicacidamplification
IssueSection:
MethodsOnline
Downloadallslides
Supplementarydata
Supplementarydata
AddSuppFiles-6-zipfile
AddSuppFiles-5-zipfile
AddSuppFiles-4-zipfile
AddSuppFiles-3-zipfile
AddSuppFiles-2-zipfile
AddSuppFiles-1-zipfile
Comments
0Comments
Comments(0)
Addcomment
Closecommentformmodal
Iagreetothetermsandconditions.
Youmustacceptthetermsandconditions.
Addcomment
Cancel
Submitacomment
Name
Affiliations
Commenttitle
Comment
Youhaveenteredaninvalidcode
Submit
Cancel
Thankyouforsubmittingacommentonthisarticle.Yourcommentwillbereviewedandpublishedatthejournal'sdiscretion.Pleasecheckforfurthernotificationsbyemail.
Advertisement
Citations
Views
52,141
Altmetric
Moremetricsinformation
×
Emailalerts
Articleactivityalert
Advancearticlealerts
Newissuealert
Subjectalert
ReceiveexclusiveoffersandupdatesfromOxfordAcademic
Moreonthistopic
IdentificationandclassificationofantiviraldefencesystemsinbacteriaandarchaeawithPADLOCrevealsnewsystemtypes
InsightsintosynthesisandfunctionofKsgA/Dim1-dependentrRNAmodificationsinarchaea
BypassingrRNAmethylationbyRsmA/Dim1duringribosomematurationinthehyperthermophilicarchaeonNanoarchaeumequitans
CrystalstructureofPyrococcushorikoshiitryptophanyl-tRNAsynthetaseandstructure-basedphylogeneticanalysissuggestanarchaealoriginoftryptophanyl-tRNAsynthetase
Relatedarticlesin
WebofScience
GoogleScholar
RelatedarticlesinPubMed
StandardisationofACPAtests:evaluationofanewcandidatereferencepreparation.
IL-10andTGF-βIncreaseConnexin-43ExpressionandMembranePotentialofHL-1CardiomyocytesCoupledwithRAW264.7Macrophages.
PROcalcitoninandNEWS2evaluationforTimelyidentificationofsepsisandOptimaluseofantibioticsintheemergencydepartment(PRONTO):protocolforamulticentre,open-label,randomisedcontrolledtrial.
6α-hydroxylatedbileacidsmediateTGR5signallingtoimproveglucosemetabolismupondietaryfibersupplementationinmice.
Citingarticlesvia
WebofScience(3462)
GoogleScholar
Crossref
Latest
MostRead
MostCited
Quality-controlledR-loopmeta-analysisrevealsthecharacteristicsofR-loopconsensusregions
RUV-III-NB:normalizationofsinglecellRNA-seqdata
GuidingthefoldingofG-quadruplexesthroughloopresidueinteractions
Selectiveablationof3′RNAendsandprocessiveRTsfacilitatedirectcDNAsequencingoffull-lengthhostcellandviraltranscripts
StructuralanddynamicstudiesofDNArecognitionbyNF-κBp50RHRhomodimerusingmethylNMRspectroscopy
Advertisement
Advertisement
AboutNucleicAcidsResearch
EditorialBoard
Policies
AuthorGuidelines
Facebook
Twitter
LinkedIn
AdvertisingandCorporateServices
JournalsCareerNetwork
OnlineISSN1362-4962PrintISSN0305-1048Copyright©2022OxfordUniversityPress
AboutUs
ContactUs
Careers
Help
Access&Purchase
Rights&Permissions
OpenAccess
PotentiallyOffensiveContent
Connect
JoinOurMailingList
OUPblog
Twitter
Facebook
YouTube
LinkedIn
Resources
Authors
Librarians
Societies
Sponsors&Advertisers
Press&Media
Agents
Explore
ShopOUPAcademic
OxfordDictionaries
Epigeum
OUPWorldwide
UniversityofOxford
OxfordUniversityPressisadepartmentoftheUniversityofOxford.ItfurtherstheUniversity'sobjectiveofexcellenceinresearch,scholarship,andeducationbypublishingworldwide
Copyright©2022OxfordUniversityPress
CookiePolicy
PrivacyPolicy
LegalNotice
SiteMap
Accessibility
Close
ThisFeatureIsAvailableToSubscribersOnly
SignInorCreateanAccount
Close
ThisPDFisavailabletoSubscribersOnly
ViewArticleAbstract&PurchaseOptions
Forfullaccesstothispdf,signintoanexistingaccount,orpurchaseanannualsubscription.
Close