Frontiers | Comparison of Two 16S rRNA Primers (V3–V4 and ...

文章推薦指數: 80 %
投票人數:10人

The gene for the small ribosomal subunit (16S rRNA) is commonly used to study the taxonomic composition of microbial communities in their ... ThisarticleispartoftheResearchTopic MarineMicrobiomes:TowardsStandardMethodsandBestPractices Viewall 5 Articles Articles CatarinaMagalhães InterdisciplinaryCenterforMarineandEnvironmentalResearch,UniversityofPorto,Portugal LiseØvreås UniversityofBergen,Norway AlessandroVezzi UniversityofPadua,Italy MiguelSemedo InterdisciplinaryCenterforMarineandEnvironmentalResearch,UniversityofPorto,Portugal Theeditorandreviewers'affiliationsarethelatestprovidedontheirLoopresearchprofilesandmaynotreflecttheirsituationatthetimeofreview. Abstract Introduction MaterialsandMethods ResultsandDiscussion ConcludingRemarks DataAvailabilityStatement AuthorContributions Funding ConflictofInterest Acknowledgments SupplementaryMaterial Footnotes References SuggestaResearchTopic> DownloadArticle DownloadPDF ReadCube EPUB XML(NLM) Supplementary Material Exportcitation EndNote ReferenceManager SimpleTEXTfile BibTex totalviews ViewArticleImpact SuggestaResearchTopic> SHAREON OpenSupplementalData ORIGINALRESEARCHarticle Front.Microbiol.,16February2021 |https://doi.org/10.3389/fmicb.2021.637526 ComparisonofTwo16SrRNAPrimers(V3–V4andV4–V5)forStudiesofArcticMicrobialCommunities EduardFadeev1,2*†,MagdaG.Cardozo-Mino1,2,JosephineZ.Rapp3,ChristinaBienhold1,2,IanSalter1,4,VerenaSalman-Carvalho5,MassimilianoMolari2,HalinaE.Tegetmeyer2,6,PierLuigiButtigieg1,2andAntjeBoetius1,2,7 1AlfredWegenerInstituteforPolarandMarineResearch,Bremerhaven,Germany 2MaxPlanckInstituteforMarineMicrobiology,Bremen,Germany 3SchoolofOceanography,UniversityofWashington,Seattle,WA,UnitedStates 4FaroeMarineResearchInstitute,Tórshavn,FaroeIslands 5DepartmentofMicrobiology,MorrillScienceCenterIVN,UniversityofMassachusetts,Amherst,MA,UnitedStates 6CenterforBiotechnology,BielefeldUniversity,Bielefeld,Germany 7MARUM,UniversityofBremen,Bremen,Germany MicrobialcommunitiesoftheArcticOceanarepoorlycharacterizedincomparisontootheraquaticenvironmentsastotheirhorizontal,vertical,andtemporalturnover.Yet,recentstudiesshowedthattheArcticmarineecosystemharborsuniquemicrobialcommunitymembersthatareadaptedtoharshenvironmentalconditions,suchasnear-freezingtemperaturesandextremeseasonality.Thegeneforthesmallribosomalsubunit(16SrRNA)iscommonlyusedtostudythetaxonomiccompositionofmicrobialcommunitiesintheirnaturalenvironment.Severalprimersetsforthismarkergenehavebeenextensivelytestedacrossvarioussamplesets,butthesetypicallyoriginatedfromlow-latitudeenvironments.Anexplicitevaluationofprimer-setperformancesinrepresentingthemicrobialcommunitiesoftheArcticOceaniscurrentlylacking.ToselectasuitableprimersetforstudyingmicrobiomesofvariousArcticmarinehabitats(seaice,surfacewater,marinesnow,deepoceanbasin,anddeep-seasediment),wehaveconductedaperformancecomparisonbetweentwowidelyusedprimersets,targetingdifferenthypervariableregionsofthe16SrRNAgene(V3–V4andV4–V5).Weobservedthatbothprimersetswerehighlysimilarinrepresentingthetotalmicrobialcommunitycompositiondowntogenusrank,whichwasalsoconfirmedindependentlybysubgroup-specificcatalyzedreporterdeposition-fluorescenceinsituhybridization(CARD-FISH)counts.Eachprimersetrevealedhigherinternaldiversitywithincertainbacterialtaxonomicgroups(e.g.,theclassBacteroidiabyV3–V4,andthephylumPlanctomycetesbyV4–V5).However,theV4–V5primersetprovidesconcurrentcoverageofthearchaealdomain,arelevantcomponentcomprising10–20%ofthecommunityinArcticdeepwatersandthesediment.Althoughbothprimersetsperformsimilarly,wesuggesttheuseoftheV4–V5primersetfortheintegrationofbothbacterialandarchaealcommunitydynamicsintheArcticmarineenvironment. Introduction TheArcticOceanisthemostrapidlychangingmarineregionontheplanetduetoitsfastwarmingcausingsubstantialsea-iceloss(PengandMeier,2018;Daietal.,2019),aswellasincreasingpollution(Peekenetal.,2018).Toassesstheimpactofglobalclimatechangeonmarinefoodwebdynamicsandelementalcycles,itisimportanttomonitorvariationsinmicrobialcommunitystructurewithtime(KarlandChurch,2014;Fuhrmanetal.,2015;Buttigiegetal.,2018).However,theArcticOceanisgenerallyunder-sampledinice-coveredregionsandinwinter(Wassmannetal.,2011),particularlywithregardtoassessmentsofitsmicrobialcommunitiesandtheirbiogeochemicalfunctions(Boetiusetal.,2015).Untilrecently,microbialmonitoringeffortsinthedeepArcticOceanconsistedof1year-roundlong-termtimeseriesattheHAUSGARTENobservatoryintheFramStrait(Soltwedeletal.,2005,2015),aswellasafewotherprocessstudies(e.g.,Kirchmanetal.,2007;Alonso-Sáezetal.,2008;Nikradetal.,2012;Wilsonetal.,2017;Mülleretal.,2018). TheArcticOceanfeaturessubstantialverticalstructurethatmayselectforspecificmicrobialtypesintheseaice(Boetiusetal.,2015;Rappetal.,2018),intheice-freeandtheice-coveredhighlystratifiedsurfacewaters(Wilsonetal.,2017;Fadeevetal.,2018),inthesinkingparticles(furtheraddressedas“marinesnow”;Fadeevetal.,2020),aswellasinthewaterandsedimentsofthedeep-seawheretemperaturesareyear-roundclosetofreezingpointtemperatures(Bienholdetal.,2012;Hoffmannetal.,2017;Wilsonetal.,2017;Rappetal.,2018;Fadeevetal.,2020).Throughouttheannualcycle,Arcticsurfacewatersbacterialandarchaealcommunitiesexhibitpronouncedfluctuationsofthedominanttaxonomicgroups(Alonso-Sáezetal.,2008;Wilsonetal.,2017;Mülleretal.,2018),whicharestronglyassociatedwithpresenceofseaiceandtheseasonalphytoplanktonblooms(Kirchmanetal.,2007;Nikradetal.,2012;Fadeevetal.,2018;Cardozo-Minoetal.,2020).Inwinter,aswellasunderice-coveredconditions,thecommunitiesaredominatedbythebacterialclassesAlphaproteobacteria(mainlytheSAR11clade),Dehalococcoidia(mainlySAR202clade),andthearchaealclassNitrososphaeria(Alonso-Sáezetal.,2008;Wilsonetal.,2017;Mülleretal.,2018).Inthesummer,andunderice-freeconditions,thecommunitiesaredominatedbythebacterialclassesBacteroidia(mainlytheorderFlavobacteriales)andGammaproteobacteria(mainlytheordersAlteromonadalesandOceanospirillales;Wilsonetal.,2017;Fadeevetal.,2018).Duringthesummer,differencesbetweenice-coveredandice-freecommunitiesalsoaffectthemicrobialdiversityofthedeepoceanandtheseafloorviaalterationsofmicrobialcommunitiesonmarinesnow(Fadeevetal.,2020). IntheframeworkoftheFRAMMicrobialObservatory(FRontiersinArcticmarineMonitoring),weareaimingtodevelopastandardizedmethodologyforlong-termobservationsofmicrobialcommunitiesinthesehighlydiverseArcticOceanenvironments,whichwillbealsocomparabletootherlong-termmicrobialtimeserieslocations(e.g.,HOTandBATS).Unlikeothertimeseriessitesoftheworld,theice-coverandtheharshconditionsoftheArcticOceanarelimitingtheaccessibilityofthesamplingsitestothesummermonths.Samplingcampaignsduringthewinter(whenmicrobialbiomassislow;Kirchmanetal.,2007;Alonso-Sáezetal.,2008)arerareandhaveonlyrecentlybeenachievedusingautonomoussamplerswithlimitedsamplingcapacities(Liuetal.,2020).Therefore,theuniqueconditionsandthecurrentlyavailabletechnologiesconstrainyear-roundmicrobialobservationstoPCR-basedapproaches(i.e.,16SrRNAgeneampliconsequencing),whichcanberealizedwithlowconcentrationsofDNA(Thomasetal.,2012).Metagenomicsapproachessuggestthatthefunctionalcapacityofmarinemicrobialcommunitiesisstronglylinkedtotheirtaxonomiccomposition(Galandetal.,2018;McNicholetal.,2020).Thus,whensupportedbycuratedtaxonomicdatabases(e.g.,SILVA16SrRNAgenereference;Quastetal.,2013),16SrRNAgeneampliconsequencingprovidesanaffordablehigh-throughputtoolforaddressingtraditionalcommunityecologyquestions,especiallyundertheconstrainedsamplingconditionsoftheArcticmarineenvironment. Acriticalstepin16SrRNAgenesequencingstudiesistheselectionofPCRprimersforDNAamplification(Armougom,2009;WangandQian,2009).Throughouttheyears,manyprimersetsweredesignedfordiversitystudiesofspecifictaxonomicgroups(e.g.,SAR11clade;Apprilletal.,2015),andattemptshavebeenmadetodevelopamoreuniversal16SrRNAgeneprimersetsthatcouldcoverclosetotheentirediversityofanaturalmicrobialcommunity(e.g.,EarthMicrobiomeProject;Caporasoetal.,2012;Gilbertetal.,2014).Thedevelopmentofprimersetsfortheamplificationof16SrRNAgenesisconductedinsilicousingreferencedatabases(e.g.,Klindworthetal.,2013).TheArcticOceanisthesmallestandshallowestofallfiveoceans,representing4%oftheareaand1%ofthevolumeoftheglobalocean.Nevertheless,itplaysanimportantroleinglobalprocessesthatarestronglyaffectedbytheongoingclimaticchangesandisconsideredrelevantforseveralEarthSystemtippingpoints(WassmannandReigstad,2011;Lentonetal.,2019).Furthermore,beingthecoldestamongtheoceans,withstrongstratificationandonlylimiteddeep-waterexchange,theArcticOceanislikelytocontainuniqueendemicmicrobialdiversitythatdrivesitsbiogeochemicalcycles(Kirchmanetal.,2009;Ghiglioneetal.,2012;Pedrós-Alióetal.,2015).AnexampleforsuchlocallyadaptedArcticdiversitywasrecentlyfoundwithArcticspecificmembersoftheubiquitousSAR11clade(Kraemeretal.,2020).Furthermore,despiteitsglobalimportance,samplingeffortintheArcticOceanislow,especiallyinandundertheseaiceandinthedeepbasin,aswellasgenerallyduringthewintertime(Wassmannetal.,2011;Royo-Llonchetal.,2020).Thus,thereferencedatabasesarelikelylackingpropercoverageofthecomplexityanddynamicsoftheArcticOceanmicrobiomesthatmayresultinbiasedrepresentationsofthembycurrentlyavailable16SrRNAgeneprimers. Oneofthemostextensivelyusedprimersetfortheinvestigationofbacterialdiversityinvariousenvironmentsisthe341F/785R(targetingtheV3–V4hypervariableregionsofthe16SrRNAgene)thatwasdevelopedbyKlindworthetal.(2013).Fortheinvestigationofmarinemicrobiomes,analternativeprimerset515F-Y/926R(targetingtheV4–V5hypervariableregionsofthe16SrRNAgene),whichisalsoabletocapturethediversityofthearchaealcommunities,hasbeendevelopedbyParadaetal.(2016).Currently,bothV3–V4andV4–V5primersetsarewidelyusedinstudiesofmarinemicrobialcommunitiesandwereextensivelytestedusingmockandnaturalcommunitiesoftemperatewaters(e.g.,Wearetal.,2018;Willisetal.,2019;McNicholetal.,2020).However,nostudyhassystematicallytestedtheperformanceoftheseprimersetsonmicrobialcommunitiesoftheArcticOcean. Inanattempttoselectthemostsuitableprimersetforthelong-termmonitoringofArcticmicrobialcommunitiesaspartoftheFRAMMolecularObservatory,wepresenthereaperformancecomparisonofthe16SrRNAgeneprimersetsV3–V4(341F/785R)andV4–V5(515F-Y/926R).OurhypothesiswasthatduetorelativelylowrepresentationofArcticmicrobialcommunitiesinpublicdatabases(duetolownumberofexistingstudies),the16SrRNAgeneprimersetsmaycapturedifferentpartsofmicrobialdiversityintheseuniqueenvironments.Totestthishypothesis,wehaveconductedadirectcomparisonofthetaxonomiccoverageandpotentialbiasesofthetwoprimersetsin37fieldsamplescollectedfromvariousenvironmentsoftheArcticOcean,includingsea-ice,surfaceanddeepwatercolumn,marinesnow,anddeep-seasediment.Asanindependentlineofvalidation,weperformedcellcountingoffivekeytaxonomicsubgroupsinasubsetofthefieldsamplesviaCARD-FISH(catalyzedreporterdeposition-fluorescenceinsituhybridization). MaterialsandMethods SampleCollection Thesamplesincludedinthisstudywerecollectedatthelong-termecologicalresearch(LTER)siteHAUSGARTENinFramStraitandthecentralArcticOcean(SupplementaryFigure1andSupplementaryTable1).Thesampleswerecollectedasfollows: •Thesea-icecoreswerecollectedusinganicecorer(9cmdiameter;KovacsEnterprise,Roseburg,OR,UnitedStates)andbrokenintosubsectionstofacilitatequickermelting.Thelower30–50cmoftheseaice(dependingontotalcorelength)wasmeltedinplasticcontainers(rinsedwithethanolandultrapurewater)at4°Cinthedark.Themeltingoftheseaicetook∼24handthesampleswereimmediatelyfilteredon0.22μmSterivexTMmembranesassoonasthelastpieceofseaicemelted.Additionalsamplesformicroscopycountswerefilteredonto0.22μmpolycarbonatemembranes(WhatmanNucleopore,Buckinghamshire,UnitedKingdom),withsterilefilteredformalinatafinalconcentrationof2%andstoredat−20°C. •Thewatersamplingwascarriedoutusing12LNiskinbottlesmountedonaCTDrosette(Sea-BirdElectronicsInc.,SBE911plusprobe,Bellevue,WA,UnitedStates)andfilteredon0.22μmSterivexTMmembranes.TheSterivexTMmembraneswerethenstoredat−20°Cuntilfurtherprocessing.Additionalsamplesformicroscopycountswerefilteredonto0.22μmpolycarbonatemembranes(WhatmanNucleopore,Buckinghamshire,UnitedKingdom),withsterilefilteredformalinatafinalconcentrationof2%andstoredat−20°C. •Thedeep-seasedimentcoreswereretrievedbyaTV-guidedmulticorer,andsubsamplesoftheuppermostcentimeterofthecoreswerecollectedwithsyringesandimmediatelystoredat−20°Cuntilfurtherprocessing. •Themarinesnowsampleswerecollectedusingsedimenttrapsofthelong-termmooringsattheLTERsiteHAUSGARTEN(Bauerfeindetal.,2009;Lalandeetal.,2013).Collectioncups(400ml)werefilledwithfilteredseawater,adjustedtoasalinityof40andpoisonedwithHgCl2(0.14%finalsolution)topreservesamplesduringdeploymentandafterrecovery(Metfiesetal.,2017).Afterrecovery,sampleswerestoredat+4°C,swimmerswereremovedandsamplesweresplitbyawetsplittingprocedure(Bodungenetal.,2013).Inthisstudy,weused1/32splitsoftheoriginaltrapsample.Sinkingparticlesfromthesedimenttrapsampleswerecollectedon0.22μmSterivexfiltersandstoredat−20°C. AllmetadataofthesamplesareaccessibleviatheDataPublisherforEarthandEnvironmentalSciencePANGAEA1,thePANGAEAeventIDsarelistedinSupplementaryTable1.SamplingmapwasproducedusingOceanDataViewv5.2.1(Schlitzer,2018). DNAIsolationand16SrRNAGeneAmpliconSequencing GenomicDNAwasisolatedinacombinedchemicalandmechanicalprocedureusingthePowerWaterDNAIsolationKitforseaice,water,andsedimenttrapsandusingthePowerSoilDNAIsolationKitforsedimentsamples(MOBIOLaboratories,Inc.,Carlsbad,CA,UnitedStates).PriortoDNAisolation,the0.22μmSterivexTMmembranecartridgesoftheseawaterandseaicesampleswerecrackedopeninordertoplacethefiltersintothekit-suppliedbeadbeatingtubes.Theisolationwascontinuedaccordingtothemanufacturer’sinstructions,andDNAwasstoredat−20°C.Librarypreparationwasperformedaccordingtothestandardinstructionsofthe16SMetagenomicSequencingLibraryPreparationprotocol(IlluminaTM,Inc.,SanDiego,CA,UnitedStates).Twodifferenthypervariableregionsofthebacterial16SrRNAgenewereamplifiedusingaliquotsoftheisolatedDNAfromeachsample.TheV3–V4regionwasamplifiedusingtheS-D-Bact-0341-b-S-17(5′-CCTACGGGNGGCWGCAG-3′)andtheS-D-Bact-0785-a-A-21(5′-GACTACHVGGGTATCTAATCC-3′)primers(Klindworthetal.,2013).TheV4–V5regionswasamplifiedusingthe515F-Y(5′-GTGYCAGCMGCCGCGGTAA-3′)andthe926R(5′-CCGYCAATTYMTTTRAGTTT-3′)primers(Paradaetal.,2016).SequenceswereobtainedontheIlluminaMiSeqTMplatformina2×300bppaired-endrunandforsurfacewatersamplesontheIlluminaHiSeqTMplatformina2×250bppaired-endrun(CeBiTec,Bielefeld,Germany),followingthestandardinstructionsofthe16SMetagenomicSequencingLibraryPreparationprotocol. Rawpaired-end,primer-trimmedreadsweredepositedintheEuropeanNucleotideArchive(ENA;Harrisonetal.,2019)underaccessionnumberPRJEB31938.ThedatawerearchivedusingthebrokerageserviceoftheGermanFederationforBiologicalData(GFBio;Diepenbroeketal.,2014). BioinformaticsandStatisticalAnalyses Therawpaired-endreadswereprimer-trimmedusingcutadapt(Martin,2011).FurtheranalyseswereconductedusingRv4.0.02inRStudiov1.2.50423.ThelibrarieswereprocessedusingDADA2v1.16(Callahanetal.,2016a),followingthesuggestedworkflow(Callahanetal.,2016b).ThereadsinMiSeqlibrariesweretruncatedat255bplengthforforwardreadsandat200bplengthforreversereads,tofacilitatethetechnicalqualitydropattheendofthereads.ReadsinbothMiSeqandHiSeqwerethentrimmedforlow-qualitybasesandmergedbasedonaminimumoverlapof10bp.Chimerasandampliconsequencevariants(ASVs)thatwereobservedinonlyonesamplewerefilteredout.TherepresentativesequencesweretaxonomicallyclassifiedagainstSILVA16SrRNAgenereferencedatabaserelease138(Quastetal.,2013;Yilmazetal.,2014).TheASVsthatweretaxonomicallyunclassifiedatphylumrankorwerenotassignedtobacterialorarchaeallineageswereexcludedfromfurtheranalysis.Furthermore,allASVsthatweretaxonomicallyassignedtomitochondriaandchloroplastwereremovedfromthedataset. SampledatamatricesweremanagedusingtheRpackage“phyloseq”v1.32(McMurdieandHolmes,2013),andplotsweregeneratedusingtheRpackage“ggplot2”v3.3.0(Gómez-Rubio,2017).ThesamplerarefactionanalyseswereconductedusingtheRpackage“iNEXT”v2.0.20(Hsiehetal.,2016).Totesttheeffectofthedifferentprimersetsonthetaxonomiccompositionofthemicrobialcommunities,aswellastotestfordifferencesbetweenmicrobialcommunitiesofdifferenttypesofsamples,atwo-waypermutationmultivariateanalysisofvariance(“Two-wayPERMANOVA”)ofJensen–ShannonDivergencedistancematrixwasconducted(usingthefunction“adonis2”intheRpackage“vegan”v.2.5.6;Oksanenetal.,2007). Scriptsforprocessingdatacanbeaccessedathttps://github.com/edfadeev/Arctic-16S-Primers-comparison/. CatalyzedReporterDepositionFluorescenceinsituHybridization Bothseaiceandseawatersamplesweredirectlyfixedin4%formalinfor4hat4°C,filteredonto0.22μmpolycarbonateTrack-EtchedTMmembranes(WhatmanNucleopore,Buckinghamshire,UnitedKingdom),andstoredat−20°C.TheCARD-FISHwasappliedbasedontheprotocolestablishedbyPernthaleretal.(2002),usinghorseradish-peroxidase(HRP)–labeledoligonucleotideprobes(4Ulm,Germany;SupplementaryTable4).AllprobeswerecheckedforspecificityandcoverageoftheirtargetgroupsagainsttheSILVA16SrRNAgenereference.Allfilterswereembeddedin0.2%low-gelling-pointagaroseandtreatedwith10mgmL–1lysozymesolution(Sigma-AldrichChemieGmbH,Hamburg,Germany)for1hat37°C.Subsequently,endogenousperoxidaseswereinactivatedbysubmergingthefilterpiecesin0.15%H2O2inmethanolfor30min,beforerinsinginMilli-Qwateranddehydrationin96%ethanol.Then,thefilterswerecoveredinahybridizationbufferandaprobeconcentrationof0.2ngμL–1.Hybridizationwasperformedat46°Cfor2.5h,followedbywashinginapre-warmedwashingbufferat48°Cfor10min,and15minin1xPBS.Signalamplificationwascarriedoutfor45minat46°Cwithanamplificationbuffercontainingeithertyramide-boundAlexa488(1μg/mL–1)orAlexa594(0.33μgmL–1).Afterward,thecellswerecounterstainedin1μg/mL–1DAPI(4′,6-diamidino-2-phenylindole;ThermoFisherScientificGmbH,Bremen,Germany)for10minat46°C.AfterrinsingwithMilli-Qwaterand96%ethanol,thefilterpieceswereembeddedina4:1mixofCitifluor(CitifluorLtd.,London,UnitedKingdom)andVectashield(VectorLaboratories,Inc.,Burlingame,UnitedStates)andstoredovernightat−20°Cforlatermicroscopyevaluation. AutomatedImageAcquisitionandCellCounting ThefilterswereevaluatedmicroscopicallyunderaZeissAxioImager.Z2stand(CarlZeissMicroImagingGmbH,Jena,Germany),equippedwithamultipurposefullyautomatedmicroscopeimagingsystem(MPISYS),aColibriLEDlightsourceilluminationsystem,andamulti-filterset62HE(CarlZeissMicroImagingGmbH,Jena,Germany).Picturesweretakenviaacooledcharged-coupled-device(CCD)camera(AxioCamMRm;CarlZeissAG,Oberkochen,Germany)witha63xoilobjective,anumericalapertureof1.4,andapixelsizeof0.1016μm/pixel,coupledtotheAxioVisionSE64Rel.4.9.1software(CarlZeissAG,Oberkochen,Germany)asdescribedbyBennkeetal.(2016).ExposuretimeswereadjustedaftermanualinspectionwiththeAxioVisionRel.4.8softwarecoupledtotheSamLoc1.7software(Zederetal.,2011),whichwasalsousedtodefinethecoordinatesofthefiltersontheslides.Forimageacquisition,channelsweredefinedwiththeMPISYSsoftware,andaminimumof55fieldsofviewwithaminimumdistanceof0.25mmwereacquiredofeachfilterpiecebyrecordingaz-stackofsevenimagesinautofocus. CellenumerationwasperformedwiththesoftwareAutomatedCellMeasuringandEnumerationTool(ACMETool3,2018-11-09;M.Zeder,TechnobiologyGmbH,Buchrain,Switzerland).CellswerecountedasobjectsaccordingtomanuallydefinedparametersseparatelyfortheDAPIandFISHchannels. ResultsandDiscussion Inthisstudy,aliquotsof37DNAsamplesfromdifferentenvironmentsintheArcticOcean(seaice,surfaceanddeepoceanwater,marinesnow,andseafloorsediment;SupplementaryTable1)weresequencedusingtwocommonprimerssetsthatamplifyeithertheV3–V4ortheV4–V5hypervariableregionsinthe16SrRNAgeneandweresubjectedtothesamebioinformaticworkflow.Bothprimersetsshowedasimilardecreaseinthenumberofsequencesthroughouttheworkflow,with62±13%and68±9%ofsequencesretainedpersample,respectively.Thefinaldatasetsconsistedof3,318,649sequencesintheV3–V4datasetthatwereassignedto12,045ASVsand3,340,628sequencesintheV4–V5datasetthatwereassignedto14,505ASVs(SupplementaryTable2).Inaddition,theASVswhichweretaxonomicallyassignedtoeukaryotic,mitochondrialorchloroplastsequences,aswellasASVsunclassifiedatphylumrank,werealsoremovedfromfurtheranalysis(ca.9%andca.17%ofsequencesinV3–V4andV4–V5datasets,respectively).Inbothdatasets,anasymptoticextrapolationoftherarefactioncurvesdidnotfurtherincreasethenumberofobservedASVs(SupplementaryFigure2).Although,mostlikelyfurthermicrobialdiversityremainstobeuncoveredinallsampledenvironments,therarefactioncurvessuggestthatoursamplescontainedmostofthepotentialcommunityrichnesscoveredbybothprimersets.Inseaice,surfacewater(<30mdepth)andmarinesnow,bothprimersetsshowedsimilarcommunityrichness(Figure1).However,inthedeep-watercommunities(>600mdepth),richnesswassignificantlydifferentbetweentheprimersets(WilcoxonSigned-RankTest;p<0.01),withca.40%morebacterialASVsintheV3–V4.Incontrast,thesedimentcommunityrichnesswassignificantlyhigherintheV4–V5dataset(Wilcoxonsigned-ranktest;p<0.01),withuptodoubletheamountofbacterialASVscomparedtotheV3–V4dataset.Themaintaxonomicgroups,typicallyobservedintheArcticmarineenvironment,suchastheclassesAlphaproteobacteria,Bacteroidia,andGammaproteobacteria,dominatedbothdatasets(eachcomprising10–30%ofsequencesinV3–V4andV4–V4datasets,respectively).However,withinthesegroupssignificantdifferencesbetweendatasetsinthenumberofobservedASVsweredetected. FIGURE1 Figure1.Chao1richnessestimatesinthedifferentsampletypes.Differentprimersetsrepresentedbycolorsandshapes.Pleasenotethedifferencesofy-axisbetweenthepanels. IntheV3–V4dataset,theBacteroidiaandGammaproteobacteriashowedthehighestdifferencesinnumberofobservedASVswithineachclass(i.e.,typerichness)comparedtotheV4–V5dataset(SupplementaryTable2).ThefamilyFlavobacteriaceae(classBacteroidia)comprised18%ofallsequencesinbothdatasets;however,intheV3–V4dataset,itconsistedofonethirdmoreASVscomparedtotheV4–V5dataset(totalof278and196ASVs,respectively;Figure2).ThisdifferenceinthenumberofobservedASVswasmainlyassociatedwithASVsofthegenusPolaribacter(totalof28and14ASVs,respectively),akeyheterotrophicbacteriumthatrespondstophytoplanktonbloomsinmid-andhigh-latitudes(Gómez-Pereiraetal.,2010;Fadeevetal.,2018;Avcıetal.,2020).TheordersAlteromonadales,Cellvibrionales,andOceanospirillales(allwithintheclassGammaproteobacteria),whichcomprised4–6%ofallsequencesintheV3–V4datasetand3%ofallsequencesintheV4–V5dataset,alsoshoweddifferencesbetweendatasetsinthenumberofobservedASVs(SupplementaryTable3).EachoftheseGammaproteobacteriaorderscontainedtwotimesmoreASVsintheV3–V4dataset,comparedtotheV4–V5dataset(thelargestdifferencewasintheorderAlteromonadales,withtotalof113and49ASVs,respectively).Thesetaxonomicgroupsaretypicallyassociatedwithorganicmatterdegradation(Buchanetal.,2014),andwerepreviouslyshowntodominateseaicemicrobialcommunitiesassociatedwithalgalaggregates(Rappetal.,2018),aswellassurfacewatersduringphytoplanktonblooms(Fadeevetal.,2018).Furthermore,thefamilyWoeseiaceae(classGammaproteobacteria)alsoconsistedofca.30%moreASVsintheV3–V4dataset,comparedtotheV4–V5dataset(totalof127and98ASVs,respectively;Figure2).Thisbacterialfamilyisabundantindeep-seasedimentsaroundtheglobe,includingtheArcticOcean(Bienholdetal.,2016;Hoffmannetal.,2020). FIGURE2 Figure2.MajortaxonomicfamiliesinV3–V4andV4–V5datasets.Thex-axisrepresentsthetotalsequenceproportionofeachfamilyinV3–V4(leftpanel)andV4–V5(rightpanel)datasets.ThenumbersateachcolumnrepresentthenumberofobservedASVsaffiliatedwitheachtaxonomicfamily.Differenttaxonomicclassesarerepresentedbycolorcode.Onlyfamiliesthatcomprisedatleast1%ofsequencesinatleastoneofthedatasetswereincludedinthevisualization. ComparedtotheV3–V4dataset,theV4–V5datasetconsistedofatleastonethirdmoreASVsintheclassesPhycisphaerae(totalof206and117ASVs,respectively)andPlanctomycetes(totalof299and244ASVs,respectively).ThisdifferenceinthenumberofobservedASVswasmainlyassociatedwiththefamiliesPirellulaceaethatcomprisedca.2%ofallsequencesinbothdatasets(Figure2),aswellasPhycisphaeraceaethatcomprisedlessthan1%ofallsequences(SupplementaryTable3)inbothdatasets.ThesetaxonomicgroupshavebeenpreviouslyshowntobeassociatedwithsinkingparticlesinthedeepoceanandarealsoabundantinArcticdeep-seasediments(Fadeevetal.,2020).Furthermore,thearchaealclassNitrososphaeriawasalmostabsentfromtheV3–V4dataset,withonlyafewsequencesassociatedwithfourASVs,comparedto168ASVsintheV4–V5datasetthatcomprised7%ofthetotalsequences(Figure2).MarinemembersoftheArchaeaingeneral,andtheclassNitrososphaeriainparticular,areabundantintheArcticmarineenvironmentandcanreachuptoonefifthofthecellsinArcticmicrobialcommunities(Mülleretal.,2018;Cardozo-Minoetal.,2020).Takentogether,theseobservationssuggestthatonASVlevelthediversityofdifferenttaxonomicgroupsarecaptureddifferentlybythetwoprimersets.Thisispotentiallyaresultofdifferencesintheregionalhypervariabilityofthe16SrRNAgenewithindifferenttaxonomicgroups(Yangetal.,2016;Kerriganetal.,2019).Inaddition,aswaspreviouslyshownforvarioustaxonomicgroups,suchastheSAR11clade,differencesincaptureddiversitymayoccuralsoduetospecificitydifferencesoftheprimersetstothetargeted16SrRNAgeneregion(Paradaetal.,2016). DespitetheobserveddifferencesonanASVlevel,theoveralltaxonomiccompositionwasconsistentbetweenthedatasets(Figure3).Sampledseaice,surfacewater,andmarinesnowcommunitiesweredominatedbyheterotrophicbacteriaoftheclassesBacteroidia(mainlythegenusPolaribacter)andGammaproteobacteria(mainlythegeneraintheorderAlteromonadales),withequivalentrelativesequenceabundancestothosedescribedinpreviousreports(Bowmanetal.,2012;Eronen-Rasimusetal.,2016;Hatametal.,2016;Wilsonetal.,2017;Fadeevetal.,2018,2020;Rappetal.,2018).Atdepth,pelagiccommunitiesweredominatedbysequencesoftheclassAlphaproteobacteria,SAR324clade,andthearchaealclassNitrososphaeria,allofwhichwerepreviouslyobservedtodominatedeepArcticwaters,aswellassurfacecommunitiesduringtheArcticwinter(Wilsonetal.,2017;Fadeevetal.,2020).Thesedimentcommunities,whichhavepreviouslybeenshowntoharborthehighesttaxonomicdiversityamongthedescribedArcticenvironmentsbyfar(Bienholdetal.,2012;Hoffmannetal.,2017;Rappetal.,2018),weredominatedinsequenceabundanceofGammaproteobacteria. FIGURE3 Figure3.Taxonomiccompositionsofthemicrobialcommunities.Differenttaxonomicclassesarerepresentedbycolorcode.Classeswithsequenceproportionbelow2%wereclassifiedas“Othertaxa”. Inordertocomparethedifferencesinrepresentationoftaxonomicgroupsbetweentheprimersets,wecombinedsequenceabundancesofallASVsaccordingtotheirtaxonomicaffiliationatgenusrank(i.e.,thehighestpossiblesharedbetweenthedatasetstaxonomicresolution).IntheV3–V4dataset,theASVsweremergedinto306differentgeneraand279lineagesthatwereaffiliatedtohighertaxonomicranks(i.e.,wereunclassifiedonagenusrank).IntheV4–V5dataset,theASVsweremergedinto280differentgeneraand299lineagesthatwereaffiliatedtohighertaxonomicranks.Overall,489(72%ofthetotal)lineageswereobservedinbothdatasetsatthisleveloftaxonomicresolution.IntheV3–V4datasettherewere96(14%ofthetotal)lineagesthatwereabsentfromtheV4–V5dataset,buttogethertheycomprisedlessthan1%ofthesequencesintheV3–V4dataset.Ontheotherhand,intheV4–V5datasettherewere90(13%ofthetotal)lineagesthatwereabsentfromtheV3–V4dataset,andtogethertheycomprised5%ofthesequencesintheV4–V5dataset.Inaddition,thedissimilarityofcommunitycompositionsinmergedV3–V4andV4–V5datasetsrevealedconsistentandsignificantdifferencebetweenthemicrobiomescapturedbybothprimersets(Two-wayPERMANOVAtest;F4,64=86.29,R2=0.83,pvalue<0.001;Figure4).Onlyasmallfractionofthetotalvariancewasassociatedwiththedifferencebetweentheprimersets(Two-wayPERMANOVAtest;F1,64=7.59,R2=0.02,pvalue<0.001).Nosignificantcombinedeffectofdifferentprimersetsondifferentsampletypeswasobserved(Two-wayPERMANOVAtest;pvalue>0.05).Takentogether,theseresultsconfirmthat,eventhoughtheprimersetsshoweddifferentsensitivitytodiversityattheASVlevel,bothofthemreflectsimilartaxonomiccompositiondowntothegenusrank. FIGURE4 Figure4.Non-metricMulti-dimensionalScaling(NMDS)ofthemicrobialcommunitiesinmergedV3–V4andV4–V5datasets,basedonJensen-ShannonDivergence.Thedifferenttypesofsamplesarerepresentedbycolors,andtheprimersetarerepresentedbyshapes.Ellipsesencompassclusteringofeachmicrobiometypewithnormalconfidenceof0.95. TheresearchattheFRAMMicrobialObservatoryisfocusedontheseasonalandinterannualdynamicsoftheArcticOceanassociatedwithchangesinseaiceextentandprimaryproductioninthesurfaceocean(e.g.,Metfiesetal.,2017;Fadeevetal.,2018,2020).Tofurtherevaluatetheperformanceofthetwoprimersetsintheselong-termmonitoredenvironments,wecomparedthesequencerepresentationofselectedtaxonomicgroups,whichareassociatedwithdistinctstagesofseasonaldynamics(Fadeevetal.,2018),tomicroscopicallycountedcellsusingCARD-FISHcombinedwithanautomatedimageacquisition(Cardozo-Minoetal.,2020).Fluorescenceinsituhybridizationtechniqueshavetheadvantageofprovidingabsoluteabundancesof(viable)cellsthatcanbedirectlycomparedbetweensamples.InmicroscopycountsofbothseaiceandsurfacewatercommunitiesthehighestobservedcellabundancewasoftheclassBacteroidia(upto35and26%ofthetotalmicrobialcommunity,respectively),whichwasconsistentwiththerepresentationofthistaxonomicgroupbybothprimersets.Insurfacewatercommunities,highlevelsofconsistencybetweenthemicroscopycountsandbothprimersetswereobservedalsointherepresentationofAlteromonadalesandPolaribacter(Table1).Ontheotherhand,therepresentation,bybothprimersets,oftheclassGammaproteobacteriainseaiceandsurfacewatercommunitieswas2–4timeshigherincomparisontotheproportionobservedinmicroscopycounts(upto9and18%,respectively).Incontrast,theproportionalabundanceoftheSAR11cladewas5–10timeshigherinthemicroscopycounts,comparedtoitsrepresentationbybothprimersets(Table1).Ourresultssuggestthatatleastforsometaxonomicgroups(i.e.,Polaribacter),bothprimersetsmayprovideaconsistentsemi-quantitativerepresentation.However,microscopyresultsmustbeinterpretedunderseveralmethodologicalcaveats,knowingthatlowcellularribosomecontentorlowefficiencyoftheprobemayaltertherepresentationofindividualtaxainourcellcounts(AmannandFuchs,2008).Therefore,theobservedinconsistencyintherepresentationofsometaxonomicgroups(i.e.,SAR11clade)mayalsoresultfromtheselimitations.Inordertofurtherinvestigatethequantitativeperformanceoftheprimersets,furtherinvestigation,usingtechniquessuchasmockcommunities(Yehetal.,2019)ormetagenomics(McNicholetal.,2020),isrequired. TABLE1 Table1.Overviewofcellabundancesandsequenceproportionsrangeinselectedtaxonomicgroups. ConcludingRemarks TounderstandthelinksbetweentherapidenvironmentalchangesintheArcticregionandthedynamicsofmicrobialcommunitiesintheArcticOcean,thereisaneedforrobustmethodsaddressingchangesindiversityandrelativeabundance.Inordertoconductsuchobservationsusinga16SrRNAgenetag-sequencingapproach,optimallyasimilarextractionmethodandasinglePCRprimersetshouldbeselected,whichcanbeappliedtoallenvironmentsoftheArcticOcean(seaice,watercolumn,anddeep-seasediment).Themostsuitableprimersetfor16SrRNAamplificationandsequencingfromenvironmentalsamplesshouldproducehigh-qualityampliconlibrariesandcoverwithminimumbiasesthevarietyofpresentorganisms,aswellastheirrelativeabundances.Wehavefoundthatatalltaxonomicranksdowntogenus,bothprimersetsrepresenttheoverallrichnessofthemajorbacterialtaxonomicgroupsatcomparablelevelsacrossthedifferentArcticOceanbiomes.Therelativesequenceabundanceofsomedominanttaxonomicgroups,suchasthePolaribacter,correspondswiththeirproportionalrepresentationviamicroscopiccellcounts.OthertaxonomicgroupssuchastheSAR11cladestronglydifferbetweenthemolecularandthemicroscopicalrepresentations.However,thisdiscrepancymaybeduetolimitationsofthemicroscopicalquantification.OnanASVlevel,bothprimersetscapturethediversitywithinthemostabundanttaxonomicgroupsdifferently,andthus,theuseofeachprimersetmaydependonthetargetgroups.However,themainadvantageoftheV4–V5primersetisitsadditionalcoverageofthearchaealdomain,withoutcompromisingthedetectionofothertaxonomicgroups.MembersoftheArchaeacompriseasubstantialfractionofArcticmarinemicrobialcommunities,particularlyduringthedarkseasonandindeepwaters.Thus,giventhedemonstratedsimilaritiesanddifferences,weendorsetheuseoftheV4–V5primersetforcapturingcomprehensiveinsightsintomicrobialcommunitydynamicsoftheArcticmarineenvironment. DataAvailabilityStatement Thedatasetspresentedinthisstudycanbefoundinonlinerepositories.Thenamesoftherepository/repositoriesandaccessionnumber(s)canbefoundinthearticle/SupplementaryMaterial. AuthorContributions EFandABdesignedthestudy.CB,IS,MM,andJRprovidedtheenvironmentalsamplesforthestudy.HTconductedthesequencingofthesamples.MC-MandVS-CconductedtheCARD-FISHcounts.EFanalyzedthedataandwrotethemanuscript.Allauthorscontributedtothefinalversionofthemanuscript. Funding ThisworkwasconductedintheframeworkoftheHGFInfrastructureProgramFRAMoftheAlfred-Wegener-InstituteHelmholtzCenterforPolarandMarineResearch.TheprojecthasreceivedfundingfromtheEuropeanResearchCouncil(ERC)undertheEuropeanUnion’sSeventhFrameworkProgram(FP7/2007-2013)researchprojectABYSS(grantagreementno.294757)awardedtoAB.AdditionalfundingcamefromtheAustrianScienceFund(FWF)M-2797toEF.ThispublicationisEprintID53010oftheAlfredWegenerInstituteforPolarandMarineResearch,Bremerhaven,Germany. ConflictofInterest Theauthorsdeclarethattheresearchwasconductedintheabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstruedasapotentialconflictofinterest. Acknowledgments WethankDanielSherforacriticalreviewofthemanuscript.WewouldalsoliketothankJanaBäger,JakobBarz,andTheresaHargesheimerforDNAextractionsandlibrarypreparations. SupplementaryMaterial TheSupplementaryMaterialforthisarticlecanbefoundonlineat:https://www.frontiersin.org/articles/10.3389/fmicb.2021.637526/full#supplementary-material Footnotes ^www.pangaea.de ^http://www.Rproject.org/ ^http://www.rstudio.com/ ^Biomers.net References Alonso-Sáez,L.,Sánchez,O.,Gasol,J.M.,Balagué,V.,andPedrós-Alio,C.(2008).Winter-to-summerchangesinthecompositionandsingle-cellactivityofnear-surfaceArcticprokaryotes.Environ.Microbiol.10,2444–2454.doi:10.1111/j.1462-2920.2008.01674.x PubMedAbstract|CrossRefFullText|GoogleScholar Amann,R.,andFuchs,B.M.(2008).Single-cellidentificationinmicrobialcommunitiesbyimprovedfluorescenceinsituhybridizationtechniques.Nat.Rev.Microbiol.6,339–348.doi:10.1038/nrmicro1888 PubMedAbstract|CrossRefFullText|GoogleScholar Apprill,A.,McNally,S.,Parsons,R.,andWeber,L.(2015).MinorrevisiontoV4regionSSUrRNA806RgeneprimergreatlyincreasesdetectionofSAR11bacterioplankton.Aquat.Microb.Ecol.75,129–137.doi:10.3354/ame01753 CrossRefFullText|GoogleScholar Armougom,F.(2009).Exploringmicrobialdiversityusing16SrRNAhigh-throughputmethods.J.Comput.Sci.Syst.Biol.2,74–92.doi:10.4172/jcsb.1000019 CrossRefFullText|GoogleScholar Avcı,B.,Krüger,K.,Fuchs,B.M.,Teeling,H.,andAmann,R.I.(2020).PolysaccharidenichepartitioningofdistinctPolaribactercladesduringNorthSeaspringalgalblooms.ISMEJ.14,1369–1383.doi:10.1038/s41396-020-0601-y PubMedAbstract|CrossRefFullText|GoogleScholar Bauerfeind,E.,Nöthig,E.-M.,Beszczynska,A.,Fahl,K.,Kaleschke,L.,Kreker,K.,etal.(2009).ParticlesedimentationpatternsintheeasternFramStraitduring2000–2005:resultsfromtheArcticlong-termobservatoryHAUSGARTEN.DeepSeaRes.PartIOceanogr.Res.Pap.56,1471–1487.doi:10.1016/j.dsr.2009.04.011 CrossRefFullText|GoogleScholar Bennke,C.M.,Reintjes,G.,Schattenhofer,M.,Ellrott,A.,Wulf,J.,Zeder,M.,etal.(2016).Modificationofahigh-throughputautomaticmicrobialcellenumerationsystemforshipboardanalyses.Appl.Environ.Microbiol.82,3289–3296.doi:10.1128/AEM.03931-15 PubMedAbstract|CrossRefFullText|GoogleScholar Bienhold,C.,Boetius,A.,andRamette,A.(2012).Theenergy–diversityrelationshipofcomplexbacterialcommunitiesinArcticdeep-seasediments.ISMEJ.6,724–732.doi:10.1038/ismej.2011.140 PubMedAbstract|CrossRefFullText|GoogleScholar Bienhold,C.,Zinger,L.,Boetius,A.,andRamette,A.(2016).Diversityandbiogeographyofbathyalandabyssalseafloorbacteria.PLoSOne11:e0148016.doi:10.1371/journal.pone.0148016 PubMedAbstract|CrossRefFullText|GoogleScholar Bodungen,B.V.,Wunsch,M.,andFürderer,H.(2013).“SamplingandanalysisofsuspendedandsinkingparticlesintheNorthernNorthAtlantic,”inMarineParticles:AnalysisandCharacterization,edsD.C.HurdandD.W.Spencer,(Washington,DC:AmericanGeophysicalUnion),47–56.doi:10.1029/GM063p0047 CrossRefFullText|GoogleScholar Boetius,A.,Anesio,A.M.,Deming,J.W.,Mikucki,J.A.,andRapp,J.Z.(2015).Microbialecologyofthecryosphere:seaiceandglacialhabitats.Nat.Rev.Microbiol.13,677–690.doi:10.1038/nrmicro3522 PubMedAbstract|CrossRefFullText|GoogleScholar Bowman,J.S.,Rasmussen,S.,Blom,N.,Deming,J.W.,Rysgaard,S.,andSicheritz-Ponten,T.(2012).MicrobialcommunitystructureofArcticmultiyearseaiceandsurfaceseawaterby454sequencingofthe16SRNAgene.ISMEJ.6,11–20.doi:10.1038/ismej.2011.76 PubMedAbstract|CrossRefFullText|GoogleScholar Buchan,A.,LeCleir,G.R.,Gulvik,C.A.,andGonzalez,J.M.(2014).Masterrecyclers:featuresandfunctionsofbacteriaassociatedwithphytoplanktonblooms.Nat.Rev.Microbiol.12,686–698.doi:10.1038/nrmicro3326 PubMedAbstract|CrossRefFullText|GoogleScholar Buttigieg,P.L.,Fadeev,E.,Bienhold,C.,Hehemann,L.,Offre,P.,andBoetius,A.(2018).Marinemicrobesin4D—usingtimeseriesobservationtoassessthedynamicsoftheoceanmicrobiomeanditslinkstooceanhealth.Curr.Opin.Microbiol.43,169–185.doi:10.1016/j.mib.2018.01.015 PubMedAbstract|CrossRefFullText|GoogleScholar Callahan,B.J.,McMurdie,P.J.,Rosen,M.J.,Han,A.W.,Johnson,A.J.A.,andHolmes,S.P.(2016a).DADA2:high-resolutionsampleinferencefromIlluminaamplicondata.Nat.Methods13,581–583.doi:10.1038/nmeth.3869 PubMedAbstract|CrossRefFullText|GoogleScholar Callahan,B.J.,Sankaran,K.,Fukuyama,J.A.,McMurdie,P.J.,andHolmes,S.P.(2016b).BioconductorWorkflowforMicrobiomeDataAnalysis:fromrawreadstocommunityanalyses.F1000Res.5:1492.doi:10.12688/f1000research.8986.2 PubMedAbstract|CrossRefFullText|GoogleScholar Caporaso,J.G.,Lauber,C.L.,Walters,W.A.,Berg-Lyons,D.,Huntley,J.,Fierer,N.,etal.(2012).Ultra-high-throughputmicrobialcommunityanalysisontheIlluminaHiSeqandMiSeqplatforms.ISMEJ.6,1621–1624.doi:10.1038/ismej.2012.8 PubMedAbstract|CrossRefFullText|GoogleScholar Cardozo-Mino,M.G.,Fadeev,E.,Salman-Carvalho,V.,andBoetius,A.(2020).SpatialdynamicsinArcticbacterioplanktoncommunitydensitiesarestronglylinkedtodistinctphysicalandbiologicalprocesses(FramStrait,79°N).bioRxiv[Preprint]doi:10.1101/2020.09.02.277574 CrossRefFullText|GoogleScholar Dai,A.,Luo,D.,Song,M.,andLiu,J.(2019).Arcticamplificationiscausedbysea-icelossunderincreasingCO2.Nat.Commun.10:121.doi:10.1038/s41467-018-07954-9 PubMedAbstract|CrossRefFullText|GoogleScholar Diepenbroek,M.,Glöckner,F.O.,Grobe,P.,Güntsch,A.,Huber,R.,König-Ries,B.,etal.(2014).“Towardsanintegratedbiodiversityandecologicalresearchdatamanagementandarchivingplatform:theGermanfederationforthecurationofbiologicaldata(GFBio),”inInformatik2014,edsE.Plödereder,L.Grunske,E.Schneider,andD.Ull,(Bonn:GesellschaftfürInformatike.V),1711–1721. GoogleScholar Eronen-Rasimus,E.,Piiparinen,J.,Karkman,A.,Lyra,C.,Gerland,S.,andKaartokallio,H.(2016).BacterialcommunitiesinArcticfirst-yeardrifticeduringthewinter/springtransition.Environ.Microbiol.Rep.8,527–535.doi:10.1111/1758-2229.12428 PubMedAbstract|CrossRefFullText|GoogleScholar Fadeev,E.,Rogge,A.,Ramondenc,S.,Nöthig,E.-M.,Wekerle,C.,Bienhold,C.,etal.(2020).Sea-iceretreatmaydecreasecarbonexportandverticalmicrobialconnectivityintheEurasianArcticbasins.Nat.Res.[Preprint].doi:10.21203/rs.3.rs-101878/v1 CrossRefFullText|GoogleScholar Fadeev,E.,Salter,I.,Schourup-Kristensen,V.,Nöthig,E.-M.,Metfies,K.,Engel,A.,etal.(2018).Microbialcommunitiesintheeastandwestframstraitduringseaicemeltingseason.Front.Mar.Sci.5:429.doi:10.3389/fmars.2018.00429 CrossRefFullText|GoogleScholar Fuhrman,J.A.,Cram,J.A.,andNeedham,D.M.(2015).Marinemicrobialcommunitydynamicsandtheirecologicalinterpretation.Nat.Rev.Microbiol.13,133–146.doi:10.1038/nrmicro3417 PubMedAbstract|CrossRefFullText|GoogleScholar Galand,P.E.,Pereira,O.,Hochart,C.,Auguet,J.C.,andDebroas,D.(2018).Astronglinkbetweenmarinemicrobialcommunitycompositionandfunctionchallengestheideaoffunctionalredundancy.ISMEJ.12,2470–2478.doi:10.1038/s41396-018-0158-1 PubMedAbstract|CrossRefFullText|GoogleScholar Ghiglione,J.-F.,Galand,P.E.,Pommier,T.,Pedrós-Alió,C.,Maas,E.W.,Bakker,K.,etal.(2012).Pole-to-polebiogeographyofsurfaceanddeepmarinebacterialcommunities.Proc.Natl.Acad.Sci.U.S.A.109,17633–17638.doi:10.1073/pnas.1208160109 PubMedAbstract|CrossRefFullText|GoogleScholar Gilbert,J.A.,Jansson,J.K.,andKnight,R.(2014).TheEarthMicrobiomeproject:successesandaspirations.BMCBiol.12:69.doi:10.1186/s12915-014-0069-1 PubMedAbstract|CrossRefFullText|GoogleScholar Gómez-Pereira,P.R.,Fuchs,B.M.,Alonso,C.,Oliver,M.J.,vanBeusekom,J.E.E.,andAmann,R.(2010).DistinctflavobacterialcommunitiesincontrastingwatermassesoftheNorthAtlanticOcean.ISMEJ.4,472–487.doi:10.1038/ismej.2009.142 PubMedAbstract|CrossRefFullText|GoogleScholar Gómez-Rubio,V.(2017).ggplot2-ElegantGraphicsforDataAnalysis,2ndEdn.doi:10.18637/jss.v077.b02 CrossRefFullText|GoogleScholar Harrison,P.W.,Alako,B.,Amid,C.,Cerdeño-Tárraga,A.,Cleland,I.,Holt,S.,etal.(2019).TheEuropeannucleotidearchivein2018.NucleicAcidsRes.47,D84–D88.doi:10.1093/nar/gky1078 PubMedAbstract|CrossRefFullText|GoogleScholar Hatam,I.,Lange,B.,Beckers,J.,Haas,C.,andLanoil,B.(2016).BacterialcommunitiesfromArcticseasonalseaicearemorecompositionallyvariablethanthosefrommulti-yearseaice.ISMEJ.10,2543–2552.doi:10.1038/ismej.2016.4 PubMedAbstract|CrossRefFullText|GoogleScholar Hoffmann,K.,Bienhold,C.,Buttigieg,P.L.,Knittel,K.,Laso-Pérez,R.,Rapp,J.Z.,etal.(2020).DiversityandmetabolismofWoeseialesbacteria,globalmembersofmarinesedimentcommunities.ISMEJ.14,1042–1056.doi:10.1038/s41396-020-0588-4 PubMedAbstract|CrossRefFullText|GoogleScholar Hoffmann,K.,Hassenrück,C.,Salman-Carvalho,V.,Holtappels,M.,andBienhold,C.(2017).Responseofbacterialcommunitiestodifferentdetrituscompositionsinarcticdeep-seasediments.Front.Microbiol.8:266.doi:10.3389/fmicb.2017.00266 PubMedAbstract|CrossRefFullText|GoogleScholar Hsieh,T.C.,Ma,K.H.,andChao,A.(2016).iNEXT:anRpackageforrarefactionandextrapolationofspeciesdiversity(Hillnumbers).MethodsEcol.Evol.7,1451–1456.doi:10.1111/2041-210X.12613 CrossRefFullText|GoogleScholar Karl,D.M.,andChurch,M.J.(2014).MicrobialoceanographyandtheHawaiiOceanTime-seriesprogramme.Nat.Rev.Microbiol.12,699–713.doi:10.1038/nrmicro3333 PubMedAbstract|CrossRefFullText|GoogleScholar Kerrigan,Z.,Kirkpatrick,J.B.,andD’Hondt,S.(2019).Influenceof16SrRNAhypervariableregiononestimatesofbacterialdiversityandcommunitycompositioninseawaterandmarinesediment.Front.Microbiol.10:1640.doi:10.3389/fmicb.2019.01640 PubMedAbstract|CrossRefFullText|GoogleScholar Kirchman,D.L.,Elifantz,H.,Dittel,A.I.,Malmstrom,R.R.,andCottrell,M.T.(2007).StandingstocksandactivityofarchaeaandbacteriainthewesternArcticOcean.Limnol.Oceanogr.52,495–507.doi:10.4319/lo.2007.52.2.0495 CrossRefFullText|GoogleScholar Kirchman,D.L.,Morán,X.A.G.,andDucklow,H.(2009).Microbialgrowthinthepolaroceans-Roleoftemperatureandpotentialimpactofclimatechange.Nat.Rev.Microbiol.7,451–459.doi:10.1038/nrmicro2115 PubMedAbstract|CrossRefFullText|GoogleScholar Klindworth,A.,Pruesse,E.,Schweer,T.,Peplies,J.,Quast,C.,Horn,M.,etal.(2013).Evaluationofgeneral16SribosomalRNAgenePCRprimersforclassicalandnext-generationsequencing-baseddiversitystudies.NucleicAcidsRes.41:e1.doi:10.1093/nar/gks808 PubMedAbstract|CrossRefFullText|GoogleScholar Kraemer,S.,Ramachandran,A.,Colatriano,D.,Lovejoy,C.,andWalsh,D.A.(2020).DiversityandbiogeographyofSAR11bacteriafromtheArcticOcean.ISMEJ.14,79–90.doi:10.1038/s41396-019-0499-4 PubMedAbstract|CrossRefFullText|GoogleScholar Lalande,C.,Bauerfeind,E.,Nöthig,E.,andBeszczynska-Möller,A.(2013).ImpactofawarmanomalyonexportfluxesofbiogenicmatterintheeasternFramStrait.Prog.Oceanogr.109,70–77.doi:10.1016/j.pocean.2012.09.006 CrossRefFullText|GoogleScholar Lenton,T.M.,Rockström,J.,Gaffney,O.,Rahmstorf,S.,Richardson,K.,Steffen,W.,etal.(2019).Climatetippingpoints—tooriskytobetagainst.Nature575,592–595.doi:10.1038/d41586-019-03595-0 PubMedAbstract|CrossRefFullText|GoogleScholar Liu,Y.,Blain,S.,Crispi,O.,Rembauville,M.,andObernosterer,I.(2020).SeasonaldynamicsofprokaryotesandtheirassociationswithdiatomsintheSouthernOceanasrevealedbyanautonomoussampler.Environ.Microbiol.22,3968–3984.doi:10.1111/1462-2920.15184 PubMedAbstract|CrossRefFullText|GoogleScholar Martin,M.(2011).Cutadaptremovesadaptersequencesfromhigh-throughputsequencingreads.EMBnetJ.17:10.doi:10.14806/ej.17.1.200 CrossRefFullText|GoogleScholar McMurdie,P.J.,andHolmes,S.(2013).phyloseq:anRpackageforreproducibleinteractiveanalysisandgraphicsofmicrobiomecensusdata.PLoSOne8:e61217.doi:10.1371/journal.pone.0061217 PubMedAbstract|CrossRefFullText|GoogleScholar McNichol,J.C.,Berube,P.M.,Biller,S.J.,andFuhrman,J.A.(2020).EvaluatingandimprovingSSUrRNAPCRprimercoverageviametagenomesfromglobaloceansurveys.bioRxiv[Preprint]doi:10.1101/2020.11.09.375543 CrossRefFullText|GoogleScholar Metfies,K.,Bauerfeind,E.,Wolf,C.,Sprong,P.,Frickenhaus,S.,Kaleschke,L.,etal.(2017).Protistcommunitiesinmooredlong-termsedimenttraps(FramStrait,Arctic)–preservationwithmercurychlorideallowsforPCR-basedmoleculargeneticanalyses.Front.Mar.Sci.4:301.doi:10.3389/fmars.2017.00301 CrossRefFullText|GoogleScholar Müller,O.,Wilson,B.,Paulsen,M.L.,Ruminska,A.,Armo,H.R.,Bratbak,G.,etal.(2018).Spatiotemporaldynamicsofammonia-oxidizingThaumarchaeotainDistinctArcticwatermasses.Front.Microbiol.9:24.doi:10.3389/fmicb.2018.00024 PubMedAbstract|CrossRefFullText|GoogleScholar Nikrad,M.P.,Cottrell,M.T.,andKirchman,D.L.(2012).Abundanceandsingle-cellactivityofheterotrophicbacterialgroupsintheWesternArcticOceaninsummerandwinter.Appl.Environ.Microbiol.78,2402–2409.doi:10.1128/AEM.07130-11 PubMedAbstract|CrossRefFullText|GoogleScholar Oksanen,J.,Kindt,R.,Legendre,P.,O’Hara,B.,Stevens,M.H.H.,Oksanen,M.J.,etal.(2007).Theveganpackage.Commun.Ecol.Packag.10:719. GoogleScholar Parada,A.E.,Needham,D.M.,andFuhrman,J.A.(2016).Everybasematters:assessingsmallsubunitrRNAprimersformarinemicrobiomeswithmockcommunities,timeseriesandglobalfieldsamples.Environ.Microbiol.18,1403–1414.doi:10.1111/1462-2920.13023 PubMedAbstract|CrossRefFullText|GoogleScholar Pedrós-Alió,C.,Potvin,M.,andLovejoy,C.(2015).DiversityofplanktonicmicroorganismsintheArcticOcean.Prog.Oceanogr.139,233–243.doi:10.1016/j.pocean.2015.07.009 CrossRefFullText|GoogleScholar Peeken,I.,Primpke,S.,Beyer,B.,Gütermann,J.,Katlein,C.,Krumpen,T.,etal.(2018).Arcticseaiceisanimportanttemporalsinkandmeansoftransportformicroplastic.Nat.Commun.9:1505.doi:10.1038/s41467-018-03825-5 PubMedAbstract|CrossRefFullText|GoogleScholar Peng,G.,andMeier,W.N.(2018).TemporalandregionalvariabilityofArcticsea-icecoveragefromsatellitedata.Ann.Glaciol.59,191–200.doi:10.1017/aog.2017.32 CrossRefFullText|GoogleScholar Pernthaler,A.,Pernthaler,J.,andAmann,R.(2002).Fluorescenceinsituhybridizationandcatalyzedreporterdepositionfortheidentificationofmarinebacteria.Appl.Environ.Microbiol.68,3094–3101.doi:10.1128/AEM.68.6.3094-3101.2002 PubMedAbstract|CrossRefFullText|GoogleScholar Quast,C.,Pruesse,E.,Yilmaz,P.,Gerken,J.,Schweer,T.,Glo,F.O.,etal.(2013).TheSILVAribosomalRNAgenedatabaseproject:improveddataprocessingandweb-basedtools.NucleicAcidsRes.41,D590–D596.doi:10.1093/nar/gks1219 PubMedAbstract|CrossRefFullText|GoogleScholar Rapp,J.Z.,Fernández-Méndez,M.,Bienhold,C.,andBoetius,A.(2018).Effectsofice-algalaggregateexportontheconnectivityofbacterialcommunitiesinthecentralArcticOcean.Front.Microbiol.9:1035.doi:10.3389/fmicb.2018.01035 PubMedAbstract|CrossRefFullText|GoogleScholar Royo-Llonch,M.,Sánchez,P.,Ruiz-González,C.,Salazar,G.,Pedrós-Alió,C.,Labadie,K.,etal.(2020).Ecogenomicsofkeyprokaryotesinthearcticocean.bioRxiv[Preprint]doi:10.1101/2020.06.19.156794 CrossRefFullText|GoogleScholar Schlitzer,R.(2018).OceanDataView.Availableonlineat:https://odv.awi.de(accessedJuly28,2019). GoogleScholar Soltwedel,T.,Bauerfeind,E.,Bergmann,M.,Bracher,A.,Budaeva,N.,Busch,K.,etal.(2015).Naturalvariabilityoranthropogenically-inducedvariation?Insightsfrom15yearsofmultidisciplinaryobservationsatthearcticmarineLTERsiteHAUSGARTEN.Ecol.Indic.65,89–102.doi:10.1016/j.ecolind.2015.10.001 CrossRefFullText|GoogleScholar Soltwedel,T.,Bauerfeind,E.,Bergmann,M.,Budaeva,N.,Hoste,E.,Jaeckisch,N.,etal.(2005).HAUSGARTEN:multidisciplinaryinvestigationsatadeep-sea,long-termobservatoryintheArcticOcean.Oceanography18,46–61.doi:10.5670/oceanog.2005.24 CrossRefFullText|GoogleScholar Thomas,T.,Gilbert,J.,andMeyer,F.(2012).Metagenomics-aguidefromsamplingtodataanalysis.Microb.Inform.Exp.2:3.doi:10.1186/2042-5783-2-3 PubMedAbstract|CrossRefFullText|GoogleScholar Wang,Y.,andQian,P.-Y.(2009).Conservativefragmentsinbacterial16SrRNAgenesandprimerdesignfor16SRibosomalDNAampliconsinmetagenomicstudies.PLoSOne4:e7401.doi:10.1371/journal.pone.0007401 PubMedAbstract|CrossRefFullText|GoogleScholar Wassmann,P.,Duarte,C.M.,Agustí,S.,andSejr,M.K.(2011).FootprintsofclimatechangeintheArcticmarineecosystem.Glob.Chang.Biol.17,1235–1249.doi:10.1111/j.1365-2486.2010.02311.x CrossRefFullText|GoogleScholar Wassmann,P.,andReigstad,M.(2011).FutureArcticOceanseasonalicezonesandimplicationsforpelagic-benthiccoupling.Oceanography24,220–231.doi:10.5670/oceanog.2011.74 CrossRefFullText|GoogleScholar Wear,E.K.,Wilbanks,E.G.,Nelson,C.E.,andCarlson,C.A.(2018).Primerselectionimpactsspecificpopulationabundancesbutnotcommunitydynamicsinamonthlytime-series16SrRNAgeneampliconanalysisofcoastalmarinebacterioplankton.Environ.Microbiol.20,2709–2726.doi:10.1111/1462-2920.14091 PubMedAbstract|CrossRefFullText|GoogleScholar Willis,C.,Desai,D.,andLaroche,J.(2019).Influenceof16SrRNAvariableregiononperceiveddiversityofmarinemicrobialcommunitiesoftheNorthernNorthAtlantic.FEMSMicrobiol.Lett.366:fnz152.doi:10.1093/femsle/fnz152 PubMedAbstract|CrossRefFullText|GoogleScholar Wilson,B.,Müller,O.,Nordmann,E.L.,Seuthe,L.,Bratbak,G.,andØvreås,L.(2017).ChangesinmarineprokaryotecompositionwithseasonanddepthoveranArcticpolaryear.Front.Mar.Sci.4:95.doi:10.3389/fmars.2017.00095 CrossRefFullText|GoogleScholar Yang,B.,Wang,Y.,andQian,P.-Y.(2016).Sensitivityandcorrelationofhypervariableregionsin16SrRNAgenesinphylogeneticanalysis.BMCBioinform.17:135.doi:10.1186/s12859-016-0992-y PubMedAbstract|CrossRefFullText|GoogleScholar Yeh,Y.-C.,McNichol,J.,Needham,D.M.,Fichot,E.B.,andFuhrman,J.A.(2019).Comprehensivesingle-PCR16Sand18SrRNAcommunityanalysisvalidatedwithmockcommunitiesanddenoisingalgorithms.bioRxiv[Preprint]doi:10.1101/866731 CrossRefFullText|GoogleScholar Yilmaz,P.,Parfrey,L.W.,Yarza,P.,Gerken,J.,Pruesse,E.,Quast,C.,etal.(2014).TheSILVAand“All-speciesLivingTreeProject(LTP)”taxonomicframeworks.NucleicAcidsRes.42,D643–D648.doi:10.1093/nar/gkt1209 PubMedAbstract|CrossRefFullText|GoogleScholar Zeder,M.,Ellrott,A.,andAmann,R.(2011).Automatedsampleareadefinitionforhigh−throughputmicroscopy.Cytom.PartA79,306–310. GoogleScholar Keywords:microbialcommunities,ampliconsequencing,methodcomparison,universalprimers,ArcticOcean,molecularobservatory Citation:FadeevE,Cardozo-MinoMG,RappJZ,BienholdC,SalterI,Salman-CarvalhoV,MolariM,TegetmeyerHE,ButtigiegPLandBoetiusA(2021)ComparisonofTwo16SrRNAPrimers(V3–V4andV4–V5)forStudiesofArcticMicrobialCommunities.Front.Microbiol.12:637526.doi:10.3389/fmicb.2021.637526 Received:03December2020;Accepted:28January2021;Published:16February2021. Editedby: CatarinaMagalhães,UniversityofPorto,Portugal Reviewedby: MiguelSemedo,UniversityofPorto,Portugal AlessandroVezzi,UniversityofPadua,Italy LiseØvreås,UniversityofBergen,Norway Copyright©2021Fadeev,Cardozo-Mino,Rapp,Bienhold,Salter,Salman-Carvalho,Molari,Tegetmeyer,ButtigiegandBoetius.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CCBY).Theuse,distributionorreproductioninotherforumsispermitted,providedtheoriginalauthor(s)andthecopyrightowner(s)arecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.Nouse,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms. *Correspondence:EduardFadeev,[email protected] †Presentaddress:EduardFadeev,DepartmentofFunctionalandEvolutionaryEcology,UniversityofVienna,Vienna,Austria COMMENTARY ORIGINALARTICLE Peoplealsolookedat SuggestaResearchTopic>



請為這篇文章評分?