Major Molecular Events of DNA Replication - Nature
文章推薦指數: 80 %
DNA is always synthesized in the 5'-to-3' direction, meaning that nucleotides are added only to the 3' end of the growing strand. As shown in Figure 2, ... Thispagehasbeenarchivedandisnolongerupdated MajorMolecularEventsofDNAReplication By: LeslieA.Pray,Ph.D. © 2008 NatureEducation Citation: Pray, L. (2008) MajormoleculareventsofDNAreplication. NatureEducation 1(1):99 ArthurKornbergcomparedDNAtoataperecordingofinstructionsthatcanbecopiedoverandover.Howdocellsmakethesenear-perfectcopies,anddoestheprocessevervary? Aa Aa Aa Scientistshavedevoteddecadesofefforttounderstanding howdeoxyribonucleicacid(DNA)replicatesitself.Insimpleterms,replication involvesuseofanexistingstrandofDNAasatemplateforthesynthesisofa new,identicalstrand.AmericanenzymologistandNobelPrizewinnerArthur Kornbergcomparedthisprocesstoataperecordingofinstructionsforperforming atask:"[E]xactcopiescanbemadefromit,asfromataperecording,sothat thisinformationcanbeusedagainandelsewhereintimeandspace"(Kornberg, 1960). Inreality,theprocessofreplicationisfarmorecomplex thansuggestedbyKornberg'sanalogy.Researcherstypicallyutilizesimplebacterial cellsintheirexperiments,buttheystilldonothavealltheanswers, particularlywhenitcomestoeukaryoticreplication.Nonetheless,scientists arefamiliarwiththebasicstepsinthereplicationprocess,andtheycontinue torelyonthisinformationasthebasisforcontinuedresearchand experimentation. TheMolecularMachineryofBacterialDNAReplication Atypicalbacterialcellhasanywherefromabout1million to4millionbasepairsofDNA,comparedtothe3billionbasepairsinthe genomeofthecommonhousemouse(Mus musculus).Still,eveninbacteria,withtheirsmallergenomes,DNA replicationinvolvesanincrediblysophisticated,highlycoordinatedseriesof molecularevents.Theseeventsaredividedintofourmajorstages:initiation, unwinding,primersynthesis,andelongation. InitiationandUnwinding Duringinitiation,so-calledinitiatorproteinsbindtothe replicationorigin,abase-pairsequenceofnucleotidesknownasoriC.This bindingtriggerseventsthatunwindtheDNAdoublehelixintotwo single-strandedDNAmolecules.Severalgroupsofproteinsareinvolvedinthisunwinding (Figure1).Forexample,theDNAhelicasesare responsibleforbreakingthehydrogenbondsthatjointhecomplementary nucleotidebasestoeachother;thesehydrogenbondsareanessentialfeature ofJames WatsonandFrancisCrick'sthree-dimensionalDNAmodel.Becausethenewlyunwoundsinglestrands haveatendencytorejoin,anothergroupofproteins,thesingle-strand-binding proteins,keepthesinglestrandsstableuntilelongationbegins.Athird familyofproteins,thetopoisomerases,reducesomeofthetorsionalstrain causedbytheunwindingofthedoublehelix. Figure1: FacilitationofDNAunwinding.DuringDNAreplication,severalproteinsfacilitatetheunwindingoftheDNAdoublehelixintotwosinglestrands.Topoisomerases(red)reducetorsionalstraincausedbytheunwindingoftheDNAdoublehelix;DNAhelicase(yellow)breakshydrogenbondsbetweencomplementarybase-pairs;single-strandbindingproteins(SSBs)stabilizetheseparatedstrandsandpreventthemfromrejoining.©2014NatureEducationAdaptedfromPierce,Benjamin.Genetics:AConceptualApproach,2nded.Allrightsreserved. Aspreviouslymentioned,thelocationatwhicha DNAstrandbeginstounwindintotwoseparatesinglestrandsisknownasthe originofreplication.AsshowninFigure1, whenthedoublehelixunwinds,replicationproceedsalongthetwosingle strandsatthesametimebutinoppositedirections(i.e.,lefttorightonone strand,andrighttoleftontheother).Thisformstworeplicationforksthat movealongtheDNA,replicatingastheygo. PrimerSynthesis Primersynthesismarksthebeginningoftheactualsynthesis ofthenewDNAmolecule.Primersareshortstretchesofnucleotides(about10 to12basesinlength)synthesizedbyanRNApolymeraseenzymecalledprimase. PrimersarerequiredbecauseDNApolymerases,theenzymesresponsibleforthe actualadditionofnucleotidestothenewDNAstrand,canonlyadd deoxyribonucleotidestothe3'-OHgroupofanexistingchainandcannotbegin synthesisdenovo.Primase,onthe otherhand,canaddribonucleotidesde novo.Later,afterelongationiscomplete,theprimerisremovedand replacedwithDNAnucleotides. Elongation Finally,elongation--theadditionofnucleotidestothenew DNAstrand--beginsaftertheprimerhasbeenadded.Synthesisofthegrowing strandinvolvesaddingnucleotides,onebyone,intheexactorderspecifiedby theoriginal(template)strand.Recallthatoneofthekeyfeaturesofthe Watson-CrickDNAmodelisthatadenineisalwayspairedwiththymineand cytosineisalwayspairedwithguanine.So,forexample,iftheoriginalstrand readsA-G-C-T,thenewstrandwillreadT-C-G-A. DNAisalwayssynthesizedinthe5'-to-3'direction,meaning thatnucleotidesareaddedonlytothe3'endofthegrowingstrand.Asshown inFigure2,the5'-phosphategroupofthenew nucleotidebindstothe3'-OHgroupofthelastnucleotideofthegrowing strand.Scientistshaveyettoidentifyapolymerasethatcanaddbasestothe 5'endsofDNAstrands.Figure2: NewDNAissynthesizedfromdeoxyribonucleosidetriphosphates(dNTPs).(A)Adeoxyribonucleosidetriphosphate(dNTP).(B)DuringDNAreplication,the3'-OHgroupofthelastnucleotideonthenewstrandattacksthe5'-phosphategroupoftheincomingdNTP.Twophosphatesarecleavedoff.(C)Aphosphodiesterbondformsbetweenthetwonucleotides,andphosphateionsarereleased.©2014NatureEducationAdaptedfromPierce,Benjamin.Genetics:AConceptualApproach,2nded.Allrightsreserved. TheDiscoveryofDNAPolymerase WhilestudyingE.coli bacteria,enzymologistArthurKornbergdiscoveredthatDNApolymerasescatalyze DNAsynthesis.Kornberg'sexperimentinvolvedmixingallofthebasic "ingredients"necessaryforE.coli DNAsynthesisinatesttube,includingnucleotides,E.coliextract,andATP,andthenpurifyingandtestingthe enzymesinvolved.Usingthismethod,KornbergnotonlydiscoveredDNA polymerases,buthealsoperformedsomeoftheinitialworkdemonstratinghow enzymesaddnewnucleotidestogrowingDNAchains(Kornberg,1959). Scientistshavesinceidentifiedatotaloffivedifferent DNApolymerasesinE.coli,eachwith aspecializedrole.Forexample,DNApolymeraseIIIdoesmostoftheelongation work,addingnucleotidesonebyonetothe3'endofthenewandgrowingsingle strand.Otherenzymes,includingDNApolymeraseIandRNaseH,areresponsible forremovingtheRNAprimerafterDNApolymeraseIIIhasbegunitswork, replacingitwithDNAnucleotides(Ogawa&Okazaki,1984).Whenthese enzymesfinish,theyleaveanickbetweenthesectionofDNAthatwasformerly theprimerandtheelongatedsectionofDNA.AnotherenzymecalledDNAligasethen actstosealthebondbetweenthetwoadjacentnucleotides. DNAPolymeraseOnlyMovesinOneDirection AfteraprimerissynthesizedonastrandofDNAandtheDNA strandsunwind,synthesisandelongationcanproceedinonlyonedirection.As previouslymentioned,DNApolymerasecanonlyaddtothe3'end,sothe5'end oftheprimerremainsunaltered.Consequently,synthesisproceedsimmediately onlyalongtheso-calledleadingstrand.Thisimmediatereplicationisknownas continuousreplication.Theotherstrand(inthe5'directionfromtheprimer) iscalledthelaggingstrand,andreplicationalongitiscalleddiscontinuous replication.Thedoublehelixhastounwindabitbeforethesynthesisof anotherprimercanbeinitiatedfurtheruponthelaggingstrand.Synthesiscan thenoccurfromthe3'endofthatnewprimer.Next,thedoublehelixunwindsa bitmore,andanotherspurtofreplicationproceeds.Asaresult,replication alongthelaggingstrandcanonlyproceedinshort,discontinuousspurts (Figure3).Figure3: ReplicationoftheleadingDNAstrandiscontinuous,whilereplicationalongthelaggingstrandisdiscontinuous.AfterashortlengthoftheDNAhasbeenunwound,synthesismustproceedinthe5'to3'direction;thatis,inthedirectionoppositethatoftheunwinding.©2014NatureEducationAdaptedfromPierce,Benjamin.Genetics:AConceptualApproach,2nded.Allrightsreserved. FigureDetail ThefragmentsofnewlysynthesizedDNAalongthelagging strandarecalledOkazakifragments,namedinhonoroftheirdiscoverer, JapanesemolecularbiologistReijiOkazaki.Okazakiandhiscolleaguesmade theirdiscoverybyconductingwhatisknownasapulse-chaseexperiment,which involvedexposingreplicatingDNAtoashort"pulse"ofisotope-labelednucleotides andthenvaryingthelengthoftimethatthecellswouldbeexposedto nonlabelednucleotides.Thislaterperiodiscalledthe"chase"(Okazakietal.,1968).Thelabelednucleotides wereincorporatedintogrowingDNAmoleculesonlyduringtheinitialfew secondsofthepulse;thereafter,onlynonlabelednucleotideswereincorporated duringthechase.ThescientiststhencentrifugedthenewlysynthesizedDNAand observedthattheshorterchasesresultedinmostoftheradioactivity appearingin"slow"DNA.Thesedimentationratewasdeterminedbysize:smaller fragmentsprecipitatedmoreslowlythanlargerfragmentsbecauseoftheir lighterweight.Astheinvestigatorsincreasedthelengthofthechases, radioactivityinthe"fast"DNAincreasedwithlittleornoincreaseof radioactivityintheslowDNA.Theresearcherscorrectlyinterpretedthese observationstomeanthat,withshortchases,onlyverysmallfragmentsofDNA werebeingsynthesizedalongthelaggingstrand.Asthechasesincreasedin length,givingDNAmoretimetoreplicate,thelaggingstrandfragmentsstarted integratingintolonger,heavier,morerapidlysedimentingDNAstrands.Today, scientistsknowthattheOkazakifragmentsofbacterialDNAaretypicallybetween 1,000and2,000nucleotideslong,whereasineukaryoticcells,theyareonly about100to200nucleotideslong. TheChallengesofEukaryoticReplication Bacterialandeukaryoticcellssharemanyofthesamebasic featuresofreplication;forinstance,initiationrequiresaprimer,elongation isalwaysinthe5'-to-3'direction,andreplicationisalwayscontinuousalong theleadingstrandanddiscontinuousalongthelaggingstrand.Butthereare alsoimportantdifferencesbetweenbacterialandeukaryoticreplication,some ofwhichbiologistsarestillactivelyresearchinginanefforttobetter understandthemoleculardetails.Onedifferenceisthateukaryoticreplication ischaracterizedbymanyreplicationorigins(oftenthousands),notjustone, andthesequencesofthereplicationoriginsvarywidelyamongspecies.Onthe otherhand,whilethereplicationoriginsforbacteria,oriC,varyinlength (fromabout200to1,000basepairs)andsequence,exceptamongcloselyrelated organisms,allbacterianonethelesshavejustasinglereplicationorigin (Mackiewiczetal.,2004). EukaryoticreplicationalsoutilizesadifferentsetofDNA polymeraseenzymes(e.g.,DNApolymeraseδandDNApolymeraseε insteadofDNApolymeraseIII).Scientistsarestillstudyingtherolesofthe 13eukaryoticpolymerasesdiscoveredtodate.Inaddition,ineukaryotes, theDNA templateiscompactedbythewayitwindsaroundproteinscalledhistones. ThisDNA-histonecomplex,calledanucleosome,posesauniquechallengeboth forthecellandforscientistsinvestigatingthemoleculardetailsof eukaryoticreplication.WhathappenstonucleosomesduringDNAreplication? Scientistsknowfromelectronmicrographstudiesthatnucleosomereassembly happensveryquicklyafterreplication(thereassemblednucleosomesarevisible intheelectronmicrographimages),buttheystilldonotknowhowthishappens (Annunziato,2005). Also,whereasbacterialchromosomesarecircular,eukaryotic chromosomesarelinear.DuringcircularDNAreplication,theexcisedprimeris readilyreplacedbynucleotides,leavingnogapinthenewlysynthesizedDNA.In contrast,inlinearDNAreplication,thereisalwaysasmallgapleftatthe veryendofthechromosomebecauseofthelackofa3'-OHgroupforreplacement nucleotidestobind.(Asmentioned,DNAsynthesiscanproceedonlyinthe 5'-to-3'direction.)Iftherewerenowaytofillthisgap,theDNAmolecule wouldgetshorterandshorterwitheverygeneration.However,theendsoflinear chromosomes—thetelomeres—haveseveralpropertiesthatpreventthis. DNAreplicationoccursduringtheSphaseofcelldivision.InE.coli, thismeansthattheentiregenomeisreplicatedinjust40minutes,atapace ofapproximately1,000nucleotidespersecond.Ineukaryotes,thepaceismuch slower:about40nucleotidespersecond.Thecoordinationoftheprotein complexesrequiredforthestepsofreplicationandthespeedatwhich replicationmustoccurinorderforcellstodivideareimpressive,especially consideringthatenzymesarealsoproofreading,whichleavesveryfewerrorsbehind. Summary ThestudyofDNAreplicationstartedalmostassoonasthestructureof DNAwaselucidated,anditcontinuestothisday.Currently,thestagesof initiation,unwinding,primersynthesis,andelongationareunderstoodinthe mostbasicsense,butmanyquestionsremainunanswered,particularlywhenit comestoreplicationoftheeukaryoticgenome.Scientistshavedevoteddecades tothestudyofreplication,andresearcherssuchasKornbergandOkazakihave madeanumberofimportantbreakthroughs.Nonetheless,muchremainstobe learnedaboutreplication,includinghowerrorsinthisprocesscontributeto humandisease. ReferencesandRecommendedReading Annunziato,A.T.Splitdecision:WhathappenstonucleosomesduringDNAreplication?JournalofBiologicalChemistry280,12065–12068(2005) Bessman,M.J.,etal.Enzymaticsynthesisofdeoxyribonucleicacid.II.Generalpropertiesofthereaction.JournalofBiologicalChemistry233,171–177(1958) Kornberg,A.Thebiologicalsynthesisofdeoxyribonucleicacid.NobelLecture,December11,1959.(linktotranscript) ———.Biologicalsynthesisofdeoxyribonucleicacid.Science131,1503–1508(1960) Lehman,I.R.,etal.Enzymaticsynthesisofdeoxyribonucleicacid.I.PreparationofsubstratesandpartialpurificationofanenzymefromEscherichiacoli.JournalofBiologicalChemistry233,163–170(1958) Losick,R.,&Shapiro,L.DNAreplication:BringingthemountaintoMohammed.Science282,1430–1431(1998) Mackiewicz,P.,etal.Wheredoesbacterialreplicationstart?RulesforpredictingtheoriCregion.NucleicAcidsResearch32,3781–3791(2004) Ogawa,T.,&Okazaki,T.FunctionofRNaseHinDNAreplicationrevealedbyRNaseHdefectivemutantsofEscherichiacoli.MolecularandGeneralGenetics193,231–237(1984) Okazaki,R.,etal.MechanismofDNAchaingrowth.I.Possiblediscontinuityandunusualsecondarystructureofnewlysynthesizedchains.ProceedingsoftheNationalAcademyofSciences59,598–605(1968) Outline | Keywords | AddContenttoGroup ArticleHistory Close Share | Cancel Revoke | Cancel Keywords KeywordsforthisArticle AddkeywordstoyourContent Save | Cancel FlagInappropriate TheContentis: Objectionable Explicit Offensive Inaccurate Comments FlagContent | Cancel Close share Close Digg MySpace Google+ StumbleUpon EmailyourFriend YourFirstName * YourLastName * YourEmailAddress * YourFriend'sEmailaddress * YourMessage* Submit | Cancel * Required Close Thiscontentiscurrentlyunderconstruction. Close ExploreThisSubject ApplicationsinBiotechnology GeneticallyModifiedOrganisms(GMOs):TransgenicCrops andRecombinantDNATechnology RecombinantDNATechnologyandTransgenicAnimals RestrictionEnzymes TheBiotechnologyRevolution:PCRandtheUseofReverseTranscriptasetoCloneExpressedGenes DNAReplication DNADamage&Repair:MechanismsforMaintainingDNAIntegrity DNAReplicationandCausesofMutation GeneticMutation GeneticMutation MajorMolecularEventsofDNAReplication Semi-ConservativeDNAReplication:MeselsonandStahl JumpingGenes BarbaraMcClintockandtheDiscoveryofJumpingGenes(Transposons) FunctionsandUtilityofAluJumpingGenes Transposons,orJumpingGenes:NotJunkDNA? Transposons:TheJumpingGenes Transcription&Translation DNATranscription RNATranscriptionbyRNAPolymerase:ProkaryotesvsEukaryotes Translation:DNAtomRNAtoProtein WhatisaGene?ColinearityandTranscriptionUnits DiscoveryofGeneticMaterial BarbaraMcClintockandtheDiscoveryofJumpingGenes(Transposons) DiscoveryofDNAastheHereditaryMaterialusingStreptococcuspneumoniae DiscoveryofDNAStructureandFunction:WatsonandCrick IsolatingHereditaryMaterial:FrederickGriffith,OswaldAvery,AlfredHershey,andMarthaChase GeneCopies CopyNumberVariation CopyNumberVariationandGeneticDisease CopyNumberVariationandHumanDisease DNADeletionandDuplicationandtheAssociatedGeneticDisorders TandemRepeatsandMorphologicalVariation RNA ChemicalStructureofRNA EukaryoticGenomeComplexity GenomePackaginginProkaryotes:theCircularChromosomeofE.coli RNAFunctions RNASplicing:Introns,ExonsandSpliceosome RNATranscriptionbyRNAPolymerase:ProkaryotesvsEukaryotes WhatisaGene?ColinearityandTranscriptionUnits TopicroomswithinNucleicAcidStructureandFunction Close Notopicroomsarethere. | LeadEditor: BobMoss NucleicAcidStructureandFunction Loading... WithinthisSubject (34) ApplicationsinBiotechnology (4) DiscoveryofGeneticMaterial (4) DNAReplication (6) GeneCopies (5) JumpingGenes (4) RNA (7) Transcription&Translation (4) Or BrowseVisually OtherTopicRooms Genetics GeneInheritanceandTransmission GeneExpressionandRegulation NucleicAcidStructureandFunction ChromosomesandCytogenetics EvolutionaryGenetics PopulationandQuantitativeGenetics Genomics GenesandDisease GeneticsandSociety CellBiology CellOriginsandMetabolism ProteinsandGeneExpression SubcellularCompartments CellCommunication CellCycleandCellDivision ScientificCommunication CareerPlanning Loading... StudentVoices CreatureCast NatureEdCast SimplyScience GreenScreen ConferenceCast GreenScience Bio2.0 Viruses101 ScholarCast TheSuccessCode WhyScienceMatters Earthbound TheBeyond PlantChemCast Pop SciBytes PostcardsfromtheUniverse BrainMetrics MindRead EyesonEnvironment AccumulatingGlitches SaltwaterScience MicrobeMatters « Prev « Prev Next » Next » ScitableChat Register | SignIn VisualBrowse Close
延伸文章資訊
- 1Eukaryotic pre-mRNA processing | RNA splicing (article)
Both ends of a pre-mRNA are modified by the addition of chemical groups. The group at the beginni...
- 2Chapter 17: From Gene to Protein Flashcards - Quizlet
- 3Directionality (molecular biology) - Wikipedia
The mRNA is scanned by the ribosome from the 5′ end, where the start codon directs the incorporat...
- 4The definition to 5' end and 3' end of a DNA strand - YouTube
- 5Translation: DNA to mRNA to Protein | Learn Science at Scitable
In this situation, translation begins at the 5' end of the mRNA while the 3' end is still ... the...