Translation: DNA to mRNA to Protein | Learn Science at Scitable
文章推薦指數: 80 %
In this situation, translation begins at the 5' end of the mRNA while the 3' end is still ... the order in which this occurs is unique to prokaryotic cells. Thispagehasbeenarchivedandisnolongerupdated Translation:DNAtomRNAtoProtein By: SuzanneClancy,Ph.D. & WilliamBrown,Ph.D. (WriteScienceRight) © 2008 NatureEducation Citation: Clancy, S. & Brown, W. (2008) Translation:DNAtomRNAtoProtein. NatureEducation 1(1):101 HowdoesthecellconvertDNAintoworkingproteins?Theprocessoftranslationcanbeseenasthedecodingofinstructionsformakingproteins,involvingmRNAintranscriptionaswellastRNA. Aa Aa Aa ThegenesinDNAencodeproteinmolecules,whicharethe"workhorses"ofthecell,carryingoutallthefunctionsnecessaryforlife.Forexample,enzymes,includingthosethatmetabolizenutrientsandsynthesizenewcellularconstituents,aswellasDNApolymerasesandotherenzymesthatmakecopiesofDNAduringcelldivision,areallproteins.Inthesimplestsense,expressingagenemeansmanufacturingitscorrespondingprotein,andthismultilayeredprocesshastwomajorsteps.Inthefirststep,theinformationinDNAistransferredtoamessengerRNA(mRNA)moleculebywayofaprocesscalledtranscription.Duringtranscription,theDNAofageneservesasatemplateforcomplementarybase-pairing,andanenzymecalledRNApolymeraseIIcatalyzestheformationofapre-mRNAmolecule,whichisthenprocessedtoformmaturemRNA(Figure1).TheresultingmRNAisasingle-strandedcopyofthegene,whichnextmustbetranslatedintoaproteinmolecule.Figure1: Ageneisexpressedthroughtheprocessesoftranscriptionandtranslation.Duringtranscription,theenzymeRNApolymerase(green)usesDNAasatemplatetoproduceapre-mRNAtranscript(pink).Thepre-mRNAisprocessedtoformamaturemRNAmoleculethatcanbetranslatedtobuildtheproteinmolecule(polypeptide)encodedbytheoriginalgene.©2013NatureEducationAllrightsreserved.FigureDetailDuringtranslation,whichisthesecondmajorstepingeneexpression,themRNAis"read"accordingtothegeneticcode,whichrelatestheDNAsequencetotheaminoacidsequenceinproteins(Figure2).EachgroupofthreebasesinmRNAconstitutesacodon,andeachcodonspecifiesaparticularaminoacid(hence,itisatripletcode).ThemRNAsequenceisthususedasatemplatetoassemble—inorder—thechainofaminoacidsthatformaprotein.Figure2: TheaminoacidsspecifiedbyeachmRNAcodon.Multiplecodonscancodeforthesameaminoacid.Thecodonsarewritten5'to3',astheyappearinthemRNA.AUGisaninitiationcodon;UAA,UAG,andUGAaretermination(stop)codons.©2014NatureEducationAllrightsreserved.FigureDetailButwheredoestranslationtakeplacewithinacell?Whatindividualsubstepsareapartofthisprocess?Anddoestranslationdifferbetweenprokaryotesandeukaryotes?Theanswerstoquestionssuchastheserevealagreatdealabouttheessentialsimilaritiesbetweenallspecies.WhereTranslationOccursWithinallcells,thetranslationmachineryresideswithinaspecializedorganellecalledtheribosome.Ineukaryotes,maturemRNAmoleculesmustleavethenucleusandtraveltothecytoplasm,wheretheribosomesarelocated.Ontheotherhand,inprokaryoticorganisms,ribosomescanattachtomRNAwhileitisstillbeingtranscribed.Inthissituation,translationbeginsatthe5'endofthemRNAwhilethe3'endisstillattachedtoDNA.Inalltypesofcells,theribosomeiscomposedoftwosubunits:thelarge(50S)subunitandthesmall(30S)subunit(S,forsvedbergunit,isameasureofsedimentationvelocityand,therefore,mass).Eachsubunitexistsseparatelyinthecytoplasm,butthetwojointogetheronthemRNAmolecule.TheribosomalsubunitscontainproteinsandspecializedRNAmolecules—specifically,ribosomalRNA(rRNA)andtransferRNA(tRNA).ThetRNAmoleculesareadaptormolecules—theyhaveoneendthatcanreadthetripletcodeinthemRNAthroughcomplementarybase-pairing,andanotherendthatattachestoaspecificaminoacid(Chapevilleetal.,1962;Grunbergeretal.,1969).TheideathattRNAwasanadaptormoleculewasfirstproposedbyFrancisCrick,co-discovererofDNAstructure,whodidmuchofthekeyworkindecipheringthegeneticcode(Crick,1958).Withintheribosome,themRNAandaminoacyl-tRNAcomplexesareheldtogetherclosely,whichfacilitatesbase-pairing.TherRNAcatalyzestheattachmentofeachnewaminoacidtothegrowingchain.TheBeginningofmRNAIsNotTranslatedInterestingly,notallregionsofanmRNAmoleculecorrespondtoparticularaminoacids.Inparticular,thereisanareanearthe5'endofthemoleculethatisknownastheuntranslatedregion(UTR)orleadersequence.ThisportionofmRNAislocatedbetweenthefirstnucleotidethatistranscribedandthestartcodon(AUG)ofthecodingregion,anditdoesnotaffectthesequenceofaminoacidsinaprotein(Figure3).So,whatisthepurposeoftheUTR?Itturnsoutthattheleadersequenceisimportantbecauseitcontainsaribosome-bindingsite.Inbacteria,thissiteisknownastheShine-Dalgarnobox(AGGAGG),afterscientistsJohnShineandLynnDalgarno,whofirstcharacterizedit.AsimilarsiteinvertebrateswascharacterizedbyMarilynKozakandisthusknownastheKozakbox.InbacterialmRNA,the5'UTRisnormallyshort;inhumanmRNA,themedianlengthofthe5'UTRisabout170nucleotides.Iftheleaderislong,itmaycontainregulatorysequences,includingbindingsitesforproteins,thatcanaffectthestabilityofthemRNAortheefficiencyofitstranslation.Figure3: ADNAtranscriptionunit.ADNAtranscriptionunitiscomposed,fromits3'to5'end,ofanRNA-codingregion(pinkrectangle)flankedbyapromoterregion(greenrectangle)andaterminatorregion(blackrectangle).Regionstotheleft,ormovingtowardsthe3'end,ofthetranscriptionstartsiteareconsidered\"upstream;\"regionstotheright,ormovingtowardsthe5'end,ofthetranscriptionstartsiteareconsidered\"downstream.\"©2014NatureEducationAdaptedfromPierce,Benjamin.Genetics:AConceptualApproach,2nded.Allrightsreserved.TranslationBeginsAftertheAssemblyofaComplexStructureThetranslationofmRNAbeginswiththeformationofacomplexonthemRNA(Figure4).First,threeinitiationfactorproteins(knownasIF1,IF2,andIF3)bindtothesmallsubunitoftheribosome.Thispreinitiationcomplexandamethionine-carryingtRNAthenbindtothemRNA,neartheAUGstartcodon,formingtheinitiationcomplex.Figure4: Thetranslationinitiationcomplex.Whentranslationbegins,thesmallsubunitoftheribosomeandaninitiatortRNAmoleculeassembleonthemRNAtranscript.Thesmallsubunitoftheribosomehasthreebindingsites:anaminoacidsite(A),apolypeptidesite(P),andanexitsite(E).TheinitiatortRNAmoleculecarryingtheaminoacidmethioninebindstotheAUGstartcodonofthemRNAtranscriptattheribosome’sPsitewhereitwillbecomethefirstaminoacidincorporatedintothegrowingpolypeptidechain.Here,theinitiatortRNAmoleculeisshownbindingafterthesmallribosomalsubunithasassembledonthemRNA;theorderinwhichthisoccursisuniquetoprokaryoticcells.Ineukaryotes,thefreeinitiatortRNAfirstbindsthesmallribosomalsubunittoformacomplex.ThecomplexthenbindsthemRNAtranscript,sothatthetRNAandthesmallribosomalsubunitbindthemRNAsimultaneously.©2013NatureEducationAllrightsreserved.FigureDetailAlthoughmethionine(Met)isthefirstaminoacidincorporatedintoanynewprotein,itisnotalwaysthefirstaminoacidinmatureproteins—inmanyproteins,methionineisremovedaftertranslation.Infact,ifalargenumberofproteinsaresequencedandcomparedwiththeirknowngenesequences,methionine(orformylmethionine)occursattheN-terminusofallofthem.However,notallaminoacidsareequallylikelytooccursecondinthechain,andthesecondaminoacidinfluenceswhethertheinitialmethionineisenzymaticallyremoved.Forexample,manyproteinsbeginwithmethioninefollowedbyalanine.Inbothprokaryotesandeukaryotes,theseproteinshavethemethionineremoved,sothatalaninebecomestheN-terminalaminoacid(Table1).However,ifthesecondaminoacidislysine,whichisalsofrequentlythecase,methionineisnotremoved(atleastinthesampleproteinsthathavebeenstudiedthusfar).Theseproteinsthereforebeginwithmethioninefollowedbylysine(Flintaetal.,1986).Table1showstheN-terminalsequencesofproteinsinprokaryotesandeukaryotes,basedonasampleof170prokaryoticand120eukaryoticproteins(Flintaetal.,1986).Inthetable,Mrepresentsmethionine,Arepresentsalanine,Krepresentslysine,Srepresentsserine,andTrepresentsthreonine.Table1:N-TerminalSequencesofProteinsN-TerminalSequencePercentofProkaryoticProteinswithThisSequencePercentofEukaryoticProteinswithThisSequenceMA*28.24%19.17%MK**10.59%2.50%MS*9.41%11.67%MT*7.65%6.67%*Methioninewasremovedinalloftheseproteins**MethioninewasnotremovedfromanyoftheseproteinsOncetheinitiationcomplexisformedonthemRNA,thelargeribosomalsubunitbindstothiscomplex,whichcausesthereleaseofIFs(initiationfactors).ThelargesubunitoftheribosomehasthreesitesatwhichtRNAmoleculescanbind.TheA(aminoacid)siteisthelocationatwhichtheaminoacyl-tRNAanticodonbasepairsupwiththemRNAcodon,ensuringthatcorrectaminoacidisaddedtothegrowingpolypeptidechain.TheP(polypeptide)siteisthelocationatwhichtheaminoacidistransferredfromitstRNAtothegrowingpolypeptidechain.Finally,theE(exit)siteisthelocationatwhichthe"empty"tRNAsitsbeforebeingreleasedbackintothecytoplasmtobindanotheraminoacidandrepeattheprocess.TheinitiatormethioninetRNAistheonlyaminoacyl-tRNAthatcanbindinthePsiteoftheribosome,andtheAsiteisalignedwiththesecondmRNAcodon.Theribosomeisthusreadytobindthesecondaminoacyl-tRNAattheAsite,whichwillbejoinedtotheinitiatormethioninebythefirstpeptidebond(Figure5).Figure5: Thelargeribosomalsubunitbindstothesmallribosomalsubunittocompletetheinitiationcomplex.TheinitiatortRNAmolecule,carryingthemethionineaminoacidthatwillserveasthefirstaminoacidofthepolypeptidechain,isboundtothePsiteontheribosome.TheAsiteisalignedwiththenextcodon,whichwillbeboundbytheanticodonofthenextincomingtRNA.©2013NatureEducationAllrightsreserved.TheElongationPhaseFigure6FigureDetailThenextphaseintranslationisknownastheelongationphase(Figure6).First,theribosomemovesalongthemRNAinthe5'-to-3'direction,whichrequirestheelongationfactorG,inaprocesscalledtranslocation.ThetRNAthatcorrespondstothesecondcodoncanthenbindtotheAsite,astepthatrequireselongationfactors(inE.coli,thesearecalledEF-TuandEF-Ts),aswellasguanosinetriphosphate(GTP)asanenergysourcefortheprocess.UponbindingofthetRNA-aminoacidcomplexintheAsite,GTPiscleavedtoformguanosinediphosphate(GDP),thenreleasedalongwithEF-TutoberecycledbyEF-Tsforthenextround.Next,peptidebondsbetweenthenow-adjacentfirstandsecondaminoacidsareformedthroughapeptidyltransferaseactivity.Formanyyears,itwasthoughtthatanenzymecatalyzedthisstep,butrecentevidenceindicatesthatthetransferaseactivityisacatalyticfunctionofrRNA(Pierce,2000).Afterthepeptidebondisformed,theribosomeshifts,ortranslocates,again,thuscausingthetRNAtooccupytheEsite.ThetRNAisthenreleasedtothecytoplasmtopickupanotheraminoacid.Inaddition,theAsiteisnowemptyandreadytoreceivethetRNAforthenextcodon.ThisprocessisrepeateduntilallthecodonsinthemRNAhavebeenreadbytRNAmolecules,andtheaminoacidsattachedtothetRNAshavebeenlinkedtogetherinthegrowingpolypeptidechainintheappropriateorder.Atthispoint,translationmustbeterminated,andthenascentproteinmustbereleasedfromthemRNAandribosome.TerminationofTranslationTherearethreeterminationcodonsthatareemployedattheendofaprotein-codingsequenceinmRNA:UAA,UAG,andUGA.NotRNAsrecognizethesecodons.Thus,intheplaceofthesetRNAs,oneofseveralproteins,calledreleasefactors,bindsandfacilitatesreleaseofthemRNAfromtheribosomeandsubsequentdissociationoftheribosome.ComparingEukaryoticandProkaryoticTranslationThetranslationprocessisverysimilarinprokaryotesandeukaryotes.Althoughdifferentelongation,initiation,andterminationfactorsareused,thegeneticcodeisgenerallyidentical.Aspreviouslynoted,inbacteria,transcriptionandtranslationtakeplacesimultaneously,andmRNAsarerelativelyshort-lived.Ineukaryotes,however,mRNAshavehighlyvariablehalf-lives,aresubjecttomodifications,andmustexitthenucleustobetranslated;thesemultiplestepsofferadditionalopportunitiestoregulatelevelsofproteinproduction,andtherebyfine-tunegeneexpression.ReferencesandRecommendedReadingChapeville,F.,etal.Ontheroleofsolubleribonucleicacidincodingforaminoacids.ProceedingsoftheNationalAcademyofSciences48,1086–1092(1962)Crick,F.Onproteinsynthesis.SymposiaoftheSocietyforExperimentalBiology12,138–163(1958)Flinta,C.,etal.SequencedeterminantsofN-terminalproteinprocessing.EuropeanJournalofBiochemistry154,193–196(1986)Grunberger,D.,etal.Codonrecognitionbyenzymaticallymischargedvalinetransferribonucleicacid.Science166,1635–1637(1969)doi:10.1126/science.166.3913.1635Kozak,M.PointmutationsclosetotheAUGinitiatorcodonaffecttheefficiencyoftranslationofratpreproinsulininvivo.Nature308,241–246(1984)doi:10.1038308241a0(linktoarticle)---.PointmutationsdefineasequenceflankingtheAUGinitiatorcodonthatmodulatestranslationbyeukaryoticribosomes.Cell44,283–292(1986)---.Ananalysisof5'-noncodingsequencesfrom699vertebratemessengerRNAs.NucleicAcidsResearch15,8125–8148(1987)Pierce,B.A.Genetics:Aconceptualapproach(NewYork,Freeman,2000)Shine,J.,&Dalgarno,L.Determinantofcistronspecificityinbacterialribosomes.Nature254,34–38(1975)doi:10.1038/254034a0(linktoarticle) Outline | Keywords | AddContenttoGroup ArticleHistory Close Share | Cancel Revoke | Cancel Keywords KeywordsforthisArticle AddkeywordstoyourContent Save | Cancel FlagInappropriate TheContentis: Objectionable Explicit Offensive Inaccurate Comments FlagContent | Cancel Close share Close Digg MySpace Google+ StumbleUpon EmailyourFriend YourFirstName * YourLastName * YourEmailAddress * YourFriend'sEmailaddress * YourMessage* Submit | Cancel * Required Close Thiscontentiscurrentlyunderconstruction. Close ExploreThisSubject ApplicationsinBiotechnology GeneticallyModifiedOrganisms(GMOs):TransgenicCrops andRecombinantDNATechnology RecombinantDNATechnologyandTransgenicAnimals RestrictionEnzymes TheBiotechnologyRevolution:PCRandtheUseofReverseTranscriptasetoCloneExpressedGenes DNAReplication DNADamage&Repair:MechanismsforMaintainingDNAIntegrity DNAReplicationandCausesofMutation GeneticMutation GeneticMutation MajorMolecularEventsofDNAReplication Semi-ConservativeDNAReplication:MeselsonandStahl JumpingGenes BarbaraMcClintockandtheDiscoveryofJumpingGenes(Transposons) FunctionsandUtilityofAluJumpingGenes Transposons,orJumpingGenes:NotJunkDNA? Transposons:TheJumpingGenes Transcription&Translation DNATranscription RNATranscriptionbyRNAPolymerase:ProkaryotesvsEukaryotes Translation:DNAtomRNAtoProtein WhatisaGene?ColinearityandTranscriptionUnits DiscoveryofGeneticMaterial BarbaraMcClintockandtheDiscoveryofJumpingGenes(Transposons) DiscoveryofDNAastheHereditaryMaterialusingStreptococcuspneumoniae DiscoveryofDNAStructureandFunction:WatsonandCrick IsolatingHereditaryMaterial:FrederickGriffith,OswaldAvery,AlfredHershey,andMarthaChase GeneCopies CopyNumberVariation CopyNumberVariationandGeneticDisease CopyNumberVariationandHumanDisease DNADeletionandDuplicationandtheAssociatedGeneticDisorders TandemRepeatsandMorphologicalVariation RNA ChemicalStructureofRNA EukaryoticGenomeComplexity GenomePackaginginProkaryotes:theCircularChromosomeofE.coli RNAFunctions RNASplicing:Introns,ExonsandSpliceosome RNATranscriptionbyRNAPolymerase:ProkaryotesvsEukaryotes WhatisaGene?ColinearityandTranscriptionUnits TopicroomswithinNucleicAcidStructureandFunction Close Notopicroomsarethere. | LeadEditor: BobMoss NucleicAcidStructureandFunction Loading... WithinthisSubject (34) ApplicationsinBiotechnology (4) DiscoveryofGeneticMaterial (4) DNAReplication (6) GeneCopies (5) JumpingGenes (4) RNA (7) Transcription&Translation (4) Or BrowseVisually OtherTopicRooms Genetics GeneInheritanceandTransmission GeneExpressionandRegulation NucleicAcidStructureandFunction ChromosomesandCytogenetics EvolutionaryGenetics PopulationandQuantitativeGenetics Genomics GenesandDisease GeneticsandSociety CellBiology CellOriginsandMetabolism ProteinsandGeneExpression SubcellularCompartments CellCommunication CellCycleandCellDivision ScientificCommunication CareerPlanning Loading... StudentVoices CreatureCast NatureEdCast SimplyScience GreenScreen ConferenceCast GreenScience Bio2.0 Viruses101 ScholarCast TheSuccessCode WhyScienceMatters Earthbound TheBeyond PlantChemCast Pop SciBytes PostcardsfromtheUniverse BrainMetrics MindRead EyesonEnvironment AccumulatingGlitches SaltwaterScience MicrobeMatters « Prev « Prev Next » Next » ScitableChat Register | SignIn VisualBrowse Close
延伸文章資訊
- 1Directionality (molecular biology) - Wikipedia
The mRNA is scanned by the ribosome from the 5′ end, where the start codon directs the incorporat...
- 2Eukaryotic pre-mRNA processing | RNA splicing (article)
Both ends of a pre-mRNA are modified by the addition of chemical groups. The group at the beginni...
- 3From DNA to RNA - Molecular Biology of the Cell - NCBI
Whereas DNA always occurs in cells as a double-stranded helix, RNA is ... The modifications of th...
- 4Translation: DNA to mRNA to Protein | Learn Science at Scitable
In this situation, translation begins at the 5' end of the mRNA while the 3' end is still ... the...
- 5The definition to 5' end and 3' end of a DNA strand - YouTube