几何学- 维基百科,自由的百科全书 - Wikipedia

文章推薦指數: 80 %
投票人數:10人

几何学(英语:Geometry,古希腊语:γεωμετρία)简称几何。

几何学是数学的一个基础分支,主要研究形状、大小、图形的相对位置等空间区域关系以及空间形式的度量。

几何学 维基百科,自由的百科全书 跳到导航 跳到搜索 笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要结果 几何学一个球面投射到一个平面。

纲要(英语:Outlineofgeometry)历史(英语:Historyofgeometry) 分支(英语:Listofgeometrytopics) 欧几里得 非欧几里得 椭圆 球面 双曲 射影 仿射 合成(英语:Syntheticgeometry) 解析 代数 算术几何 微分 黎曼 辛几何 离散微分(英语:Discretedifferentialgeometry) 有限 重合 概念特性维度 尺规作图 角度 曲线 对角线 平行 垂直 顶点 全等 相似 对称 零 /一维 点 直线 线段 射线 长度 二维 平面 面积 多边形 三角形 Altitude 斜边 边长 勾股定理 平行四边形 正方形 三角形 菱形 平行四边形 四边形 梯形 等腰梯形 筝形 圆形 直径 周长 面积 三维 空间 多面体 体积 表面积 正多面体 凸正多面体 六面体 立方体 长方体 四角柱 平行六面体 几何体 棱锥 圆锥体 棱柱 圆柱体 球体 直径 体积与表面积 球缺 四维- /其他维度 多胞形 四维凸正多胞体 四维超正方体 超球体 几何学家 按照姓名 会田安明 阿耶波多 Ahmes 海什木 阿波罗尼奥斯 阿基米德 阿蒂亚 Baudhayana 鲍耶 Brahmagupta Cartan Descartes 欧几里得 欧拉 高斯 格罗莫夫 希尔伯特 Jyeṣṭhadeva Kātyāyana Khayyám 克莱因 罗巴切夫斯基 Manava 闵可夫斯基 明安图 帕斯卡 毕达哥拉斯 Parameshvara 庞加莱 黎曼 Sakabe Sijzi 图西 维布伦 Virasena 杨辉 al-Yasamin 张衡 几何学家列表 按照时期 公元前 Ahmes Baudhayana Manava 毕达哥拉斯 欧几里得 阿基米德 阿波罗尼奥斯 1–1400年代 张衡 Kātyāyana 阿耶波多 Brahmagupta Virasena 海什木 Sijzi Khayyám al-Yasamin al-Tusi 杨辉 Parameshvara 1400–1700年代 Jyeṣṭhadeva Descartes 帕斯卡 明安图 欧拉 Sakabe 会田安明 1700–1900年代 高斯 罗巴切夫斯基 鲍耶 黎曼 克莱因 庞加莱 希尔伯特 闵可夫斯基 Cartan 维布伦 现代 阿蒂亚 格罗莫夫 几何学主题查论编 几何学(英语:Geometry,古希腊语:γεωμετρία)简称几何。

几何学是数学的一个基础分支,主要研究形状、大小、图形的相对位置等空间区域关系以及空间形式的度量。

许多文化中都有几何学的发展,包括许多有关长度、面积及体积的知识,在公元前六世纪泰勒斯的时代,西方世界开始将几何学视为数学的一部分。

公元前三世纪,几何学中加入欧几里德的公理,产生的欧几里得几何是往后几个世纪的几何学标准[1]。

阿基米德发展了计算面积及体积的方法,许多都用到积分的概念。

天文学中有关恒星和行星在天球上的相对位置,以及其相对运动的关系,都是后续一千五百年中探讨的主题。

几何和天文都列在西方博雅教育中的四术中,是中古世纪西方大学教授的内容之一。

勒内·笛卡儿发明的坐标系以及当时代数的发展让几何学进入新的阶段,像平面曲线等几何图形可以由函数或是方程等解析的方式表示。

这对于十七世纪微积分的引入有重要的影响。

透视投影的理论让人们知道,几何学不只是物体的度量属性而已,透视投影后来衍生出射影几何。

欧拉及高斯开始有关几何物件本体性质的研究,使几何的主题继续扩充,最后产生了拓扑学及微分几何。

在欧几里德的时代,实际空间和几何空间之间没有明显的区别,但自从十九世纪发现非欧几何后,空间的概念有了大幅的调整,也开始出现哪一种几何空间最符合实际空间的问题。

在二十世纪形式数学兴起以后,空间(包括点、线、面)已没有其直观的概念在内。

今日需要区分实体空间、几何空间(点、线、面仍没有其直观的概念在内)以及抽象空间。

当代的几何学考虑流形,空间的概念比欧几里德中的更加抽象,两者只在极小尺寸下才彼此近似。

这些空间可以加入额外的结构,因此可以考虑其长度。

近代的几何学和物理关系密切,就像伪黎曼流形和广义相对论的关系一样。

物理理论中最年轻的弦理论也和几何学有密切关系。

几何学可见的特性让它比代数、数论等数学领域更容易让人接触,不过一些几何语言已经和原来传统的、欧几里得几何下的定义越差越远,例如碎形几何及解析几何等[2]。

现代概念上的几何其抽象程度和一般化程度大幅提高,并与分析、抽象代数和拓扑学紧密结合。

几何学应用于许多领域,包括艺术,建筑,物理和其他数学领域。

目录 1简史 2古代几何学 3名称的由来 4分类 4.1实务几何学 4.2公理化几何学 4.3几何建构 4.4几何中的数 5几何学中重要的概念 5.1公理 5.2点 5.3线 5.4平面 5.5角 6当代的几何学 6.1欧几里德几何 6.2微分几何 6.3拓扑学和几何学 6.4解析几何 7分支学科 8相关条目 8.1其他领域 9参考文献 10外部链接 简史[编辑] 几何一词源于《几何原本》的翻译。

《几何原本》是世界数学史上影响最为久远,最大的一部数学教科书。

《几何原本》传入中国,首先应归功于明末科学家徐光启。

徐光启和利玛窦《几何原本》中译本的一个伟大贡献是确定了研究图形的这一学科中文名称为“几何”,并确定了几何学中一些基本术语的译名。

“几何”的原文是“geometria”(英文geometry),徐光启和利玛窦在翻译时,取“geo”的音为“几何”(明朝音:gi-ho),而“几何”二字中文原意又有“衡量大小”的意思。

用“几何”译“geometria”(英文geometry),音义兼顾,确是神来之笔。

几何学中最基本的一些术语,如点、线、直线、平行线、角、三角形和四边形等中文译名,都是这个译本定下来的。

这些译名一直流传到今天,且东渡到汉字文化圈的日本、朝鲜等国(越南语则使用独自翻译的越制汉语“形學(hìnhhọc)”一词),影响深远。

几何学开始的最早记录可以追踪到公元前2世纪的古代埃及和美索不达米亚。

[3][4]早期的几何学是有关长度、角度、面积和体积的经验性定律的收集,这些都是因为实际需要(比如勘探、建筑、天文和一些手工业)而发展的。

最早的已知有关几何学的文本是埃及的莱因德纸草书(公元前2000-1800年)和莫斯科数学纸草书(约公元前1890年),以及古巴比伦的泥石板(比如“普林顿322”(公元前1900年))。

比如,莫斯科纸草书上给出了如何计算棱台体积的公式。

[5]埃及南部的古代努比亚人曾经建立了一套几何学系统,包括有太阳钟的早期版本。

[6][7] 几何学有悠久的历史。

最古老的欧氏几何基于一组公设和定义,人们在公设的基础上运用基本的逻辑推理构做出一系列的命题。

可以说,《几何原本》是公理化系统的第一个范例,对西方数学思想的发展影响深远。

一千年后,笛卡儿在《方法论》的附录《几何》中,将坐标引入几何,带来革命性进步。

从此几何问题能以解析式的形式来表达。

欧几里得几何学的第五公设,由于并不自明,引起了历代数学家的关注。

最终,由罗巴切夫斯基和黎曼建立起两种非欧几何[8]。

几何学的现代化则归功于克莱因、希尔伯特等人。

克莱因在普吕克的影响下,应用群论的观点将几何变换视为特定不变量约束下的变换群。

而希尔比特为几何奠定了真正的科学的公理化基础。

应该指出几何学的公理化,影响是极其深远的,它对整个数学的严密化具有极其重要的先导作用。

它对数理逻辑学家的启发也是相当深刻的。

古代几何学[编辑] 几何最早的有记录的开端可以追溯到古埃及(参看古埃及数学),古印度(参看古印度数学),和古巴比伦(参看古巴比伦数学),其年代大约始于前3000年。

早期的几何学是关于长度,角度,面积和体积的经验原理,被用于满足在测绘,建筑,天文,和各种工艺制作中的实际需要。

在它们中间,有令人惊讶的复杂的原理,以至于现代的数学家很难不用微积分来推导它们。

例如,埃及和巴比伦人都在毕达哥拉斯之前1500年就知道了毕达哥拉斯定理(勾股定理);埃及人有方形棱锥的锥台(截头金字塔形)的体积的正确公式;而巴比伦有一个三角函数表。

名称的由来[编辑] 几何这个词最早来自于希腊语“γεωμετρία”,由“γέα(希臘語:γέα)”(土地)和“μετρεĭν(希臘語:μετρεĭν)”(测量)两个词合成而来,指土地的测量,即测地术。

后来拉丁语化为“geometria”。

中文中的“几何”一词,最早是在明代利玛窦、徐光启合译《几何原本》时,由徐光启所创。

当时并未给出所依根据,后世多认为一方面几何可能是拉丁化的希腊语GEO的音译,另一方面由于《几何原本》中也有利用几何方式来阐述数论的内容,也可能是magnitude(多少)的意译,所以一般认为几何是geometria的音、意并译。

用“几何”的音来表达,关于数与量的,用“几何”的义来表达。

换句话说,徐光启心目中的“几何”,可能就是今天我们所谓的“数学”。

所以他为译本所取的名字,以今日用语再翻译一次,就是:《基础数学》。

所以如果了解《几何原本》为《基础数学》,它当然会包含像辗转相除法这样的课题。

希腊语GEO+METRY按照字源意思是“地理测算”的意思,所以依照字面意思对照现代分类相当于测算学,分平面测算学与立体测算学。

1607年出版的《几何原本》中关于几何的译法在当时并未通行,同时代也存在着另一种译名——“形学”,如狄考文、邹立文、刘永锡编译的《形学备旨》,在当时也有一定的影响。

在1857年李善兰、伟烈亚力续译的《几何原本》后9卷出版后,几何之名虽然得到了一定的重视,但是直到20世纪初的时候才有了较明显的取代形学一词的趋势,如1910年《形学备旨》第11次印刷成都翻刊本徐树勋就将其改名为《续几何》。

直至20世纪中期,已鲜有“形学”一词的使用出现。

分类[编辑] 实务几何学[编辑] 毕氏定理(3,4,5)三角形的图像化证明,记载在公元前500-200年的《周髀算经》中 几何学起源于一些实务上有关量测、面积及体积的科学。

在许多方面都已找到相当的公式,例如毕氏定理、圆的周长及面积、三角形的面积、圆柱、球及四角锥的体积等。

泰勒斯发展了以几何物件的相似为基础,计算一些无法直接量测的高度或距离的方法。

天文学的发展也带来三角学及球面三角学的诞生,也有一些对应的计算技巧。

公理化几何学[编辑] 欧几里德平行公设的说明 参见:欧几里德几何 欧几里德在所著的《几何原本》中作了更抽象化的处理。

欧几里德引入了一些公理来说明点、线和面一些基本的或是可自证的性质。

接着再用数学的思考再去推导其他的性质。

几何原本中的推导以其严谨性著称,称为公理化几何。

在十九世纪初时,尼古拉·罗巴切夫斯基(1792–1856)、鲍耶·亚诺什(1802–1860)及卡尔·弗里德里希·高斯(1777–1855)发展了非欧几何,其他数学家开始再度对此一领域有兴趣。

二十世纪的大卫·希尔伯特试图用公理化的理解为几何学提供现代的基础。

几何建构[编辑] 主条目:尺规作图 古典的几何学家花了许多心力要绘制定理中绘述的几何物件。

传统上,可以使用的工具是圆规及没有刻度的直尺,需要在有限次数的绘制内完成图形。

有些图形很难(甚至无法)单纯用尺规作图求得,需要配合抛物线、其他曲线或是机械工具才能完成。

几何中的数[编辑] 毕达格拉斯发现三角形的三边可能会有不可通约性 古希腊的毕达格拉斯就已考虑过数字在几何中的角色。

不过因为不可通约长度的出现,不符合他的哲学观点,因此他们放弃抽象的几何量,改用实际上的几何量,例如图案的长及面积。

后来勒内·笛卡儿利用坐标系再让数字和几何连结,笛卡儿也发现根据一图示的代数表现可以知道此形状,后来笛卡儿用的坐标系就称为笛卡儿坐标系。

几何学中重要的概念[编辑] 公理[编辑] 参见:欧几里得空间 欧几里得所提出的抽象概念,进而使得《几何原本》列入了最有影响力的书籍之一,欧几里得提出五大公理和公设,揭示了点线面的自可证的基本性质,他一直试图通过其他数学理论来严谨性推导其他性质,而这也是欧几里得陈述的最特色的地方,并使得几何更加公理化和系统化(英语:syntheticgeometry)。

19世纪初,尼古拉·罗巴切夫斯基(1792–1856),鲍耶·亚诺什(1802–1860),卡尔·弗里德里希·高斯(1777–1855)对非欧几里得几何的探索使得几何学领域又得以重新发展,而在20世纪初,大卫希尔伯特把公理性证明的引入成就了现代几何学的出现。

点[编辑] 主条目:点 点作为欧几里得空间的基本构成,通过很多方式定义,包括欧几里得所定义的“点不占据空间[9]”以及在代数与嵌套空间的引用[10]。

在几何学的众多领域,包括分析几何,微分几何,以及拓扑学,所有的单元都是点构造出来的,然而,有些几何学的研究缺乏对点这个元素的参照。

[11] 线[编辑] 主条目:直线 欧几里得把线形容成‘在点之间均匀铺着’的‘没有宽度的长度’[9],在现代数学体系已给知的多元几何中,线的定义也相当的接近几何学中的定义,例如在解析几何中,点坐标的集合所构成的一个已知一次方程称为线,[12]而在像重合几何这种更抽象的设定中,线可以是个单独的对象,而区别于点的集合所构成的情况[13]。

在微分几何中,对曲率不为0的流形,测地线往往更好能表达线的概念。

[14] 平面[编辑] 主条目:平面(数学) 二维,光滑且无限延展的平层构成了平面,[9]几何学到处都会用到面,例如,研究拓扑学的曲面对象可以看作一个没有距离和角度做参照的平层[15];对在仿射空间的面,没有参照距离却有共线性和曲率的研究[16]。

或是在高斯平面(复平面)需要用到复分析[17]等。

角[编辑] 主条目:角 欧几里得所描述的平面角,是指在一个平面内两条相交却不平行的直线中间的倾角[9]在现代几何学名词中,共有一个顶点的两条射线形成角的两边,而所形成的角度称为角。

[18] 在欧几里得几何中,角一般用来研究多边形或三角形,也有对其本身的研究[9]对三角形或单位圆中对角的研究构成了三角学的基础[19]。

在微分几何和微积分学中,平面曲线,曲线和曲面内的角可以用导数表示.[20][21] 当代的几何学[编辑] 欧几里德几何[编辑] 421多胞形(英语:421polytope)在E8(英语:E8(mathematics))李群考克斯特元素(英语:Coxeterplane)下的正交投影 欧几里德几何和计算几何、计算机图形、凸几何(英语:convexgeometry)、关联几何、有限几何学、离散几何学,以及组合数学中的部分领域都有密切关系。

欧几里德几何和欧几里德群在晶体学上的进展和哈罗德·斯科特·麦克唐纳·考克斯特的研究已受到注意,可以在考克斯特群及多胞形的理论中看到。

几何群论(英语:Geometricgrouptheory)是将几何学延伸到离散群中,有关其几何结构及代数技术的研究。

微分几何[编辑] 微分几何因着爱因斯坦的广义相对论假设有曲率的宇宙,因此逐渐受到数学物理的重视。

现代的微分几何是本质性的,将空间视为是微分流形,其几何结构则由黎曼流形处理,包括如何量测二点之间的距离等。

不再只是欧几里德几何中先验的一部分。

拓扑学和几何学[编辑] 较粗的三叶结 拓扑学是转换几何(英语:transformationgeometry)中的一部分,专注在同胚的转换,拓扑学在二十世纪有显著的进展,简单来说,拓扑学可以说是“橡皮下的几何学”。

当代的几何拓扑学、微分拓扑,以及像莫尔斯理论等子领域,被大部分数学家视为是几何学的一部分。

代数拓扑和点集拓扑学则被视为是另一个新的领域。

解析几何[编辑] 主条目:解析几何五维卡拉比-丘流形 解析几何是欧几里德几何的现代版本,从1950年代末到1970年代中有大幅的进展,主要是因为让-皮埃尔·塞尔及亚历山大·格罗森迪克的贡献,这也产生了概形以及代数拓扑学一些方法的重视,包括许多的上同调理论(英语:cohomologytheory)。

千禧年大奖难题中的霍奇猜想就是解析几何学的问题。

低维度代数簇、代数曲线及代数曲面(英语:algebraicsurface)的研究以及三维代数簇(algebraicthreefolds)的研究都有很多进展。

Gröbner基(英语:en:Gröbnerbasis)理论及实代数几何(英语:realalgebraicgeometry)应用在现在解析几何的一些子领域中。

算术几何(Arithmeticgeometry)是结合了解析几何及数论的一个新的领域。

另外一个研究方向是模空间及复几何(英语:Complexgeometry)。

代数几何的方法广泛的用在弦理论及膜宇宙理论中。

分支学科[编辑] 平面几何 立体几何 非欧几何 罗氏几何 黎曼几何 解析几何 射影几何 仿射几何 代数几何 微分几何 计算几何 拓扑学 分形几何,又称碎形几何 相关条目[编辑] 几何学主题 查看维基词典中的词条“幾何學”或“幾何”。

画法几何 平面国,埃德温·A·艾勃特(英语:EdwinAbbottAbbott)的小说,有提到二维空间及三维空间 动态几何软件 三角学 几何学家列表 数学著作列表 其他领域[编辑] 分子结构 参考文献[编辑] ^MartinJ.Turner,JonathanM.Blackledge,PatrickR.Andrews(1998)."Fractalgeometryindigitalimaging(页面存档备份,存于互联网档案馆)".AcademicPress.p.1.ISBN978-0-12-703970-1 ^在代数几何中常提到有限体上代数簇的几何,也许是奇点。

某一方面来看,这些只是有限个点产生的集合,但配合几何的想像及已充分发展的几何工具,可以找到一些结构,并设定性质,让它们可以类比一般空间的圆球及圆锥 ^J.Friberg,"MethodsandtraditionsofBabylonianmathematics.Plimpton322,Pythagoreantriples,andtheBabyloniantriangleparameterequations",HistoriaMathematica,8,1981,pp.277—318. ^Neugebauer,Otto.TheExactSciencesinAntiquity(2ed.).DoverPublications.1969[1957].ISBN 978-0-486-22332-2. Chap.IV"EgyptianMathematicsandAstronomy",pp.71–96. ^Boyer(1991),"Egypt"p.19 ^TheJournalofEgyptianArchaeology.Vol.84,1998GnomonsatMeroëandEarlyTrigonometry.pg.171 ^NeolithicSkywatchers.May27,1998byAndrewL.SlaymanArchaeology.org.[2012-09-09].(原始内容存档于2011-06-05).  ^自然科學概論.五南图书出版股份有限公司.1996:246–[27September2014].ISBN 978-957-11-1185-8.  ^9.09.19.29.39.4Euclid'sElements–Allthirteenbooksinonevolume,BasedonHeath'stranslation,GreenLionPressISBN 1-888009-18-7. ^Clark,BowmanL.IndividualsandPoints.NotreDameJournalofFormalLogic.Jan1985,26(1):61–75[29August2016].doi:10.1305/ndjfl/1093870761.(原始内容存档于2017-09-09).  ^Gerla,G.,1995,"PointlessGeometries(页面存档备份,存于互联网档案馆)"inBuekenhout,F.,Kantor,W.eds.,Handbookofincidencegeometry:buildingsandfoundations.North-Holland:1015–31. ^JohnCasey(英语:JohnCasey(mathematician))(1885)AnalyticGeometryofthePoint,Line,Circle,andConicSections,linkfrom互联网档案馆. ^Buekenhout,Francis(1995),HandbookofIncidenceGeometry:BuildingsandFoundations,ElsevierB.V. ^geodesic–definitionofgeodesicinEnglishfromtheOxforddictionary.OxfordDictionaries.com(英语:OxfordDictionaries.com).[2016-01-20].(原始内容存档于2016-07-15).  ^Munkres,JamesR.Topology.Vol.2.UpperSaddleRiver:PrenticeHall,2000. ^Szmielew,Wanda.'FromaffinetoEuclideangeometry:Anaxiomaticapproach.'Springer,1983. ^Ahlfors,LarsV."Complexanalysis:anintroductiontothetheoryofanalyticfunctionsofonecomplexvariable."'NewYork,London'(1953). ^Sidorov,L.A.,Angle,Hazewinkel,Michiel(编),数学百科全书,Springer,2001,ISBN 978-1-55608-010-4  ^Gelʹfand,IzrailʹMoiseevič,andMarkSaul."Trigonometry."'Trigonometry'.BirkhäuserBoston,2001.1-20. ^詹姆斯·史都华(数学家)(2012).Calculus:EarlyTranscendentals,7thed.,BrooksColeCengageLearning.ISBN 978-0-538-49790-9 ^Jost,Jürgen,RiemannianGeometryandGeometricAnalysis,Berlin:Springer-Verlag,2002,ISBN 3-540-42627-2  《世界数学史简编》,梁宗巨,1981年,辽宁人民出版社,第90页~第92页 卡尔·本杰明·波耶(英语:CarlBenjaminBoyer)(CarlBenjaminBoyer)AHistoryofMathematics,2nded.rev.byUtaC.Merzbach.NewYork:Wiley,1989ISBN978-0-471-09763-1(1991pbked.ISBN978-0-471-54397-8). 外部链接[编辑] 圜容较义(页面存档备份,存于互联网档案馆) 查论编几何学术语点 顶点 交点 中点 角 极值点 最值点 临界点 驻点 鞍点 直线和曲线 线段 射线 直线 切线 (主)法线 副法线 曲线 圆锥曲线 双曲线 抛物线 正弦曲线 螺线(阿基米德螺线、等角螺线……) 摆线(最速降线问题) 悬链线 曳物线 渐开线 渐屈线 渐近线 测地线 边 周界 弦 弧 垂直平分线 二次曲线 代数曲线 椭圆曲线 超椭圆 星形线 三尖瓣线 方圆形 勒洛三角形 平面图形 圆(广义圆) 椭圆 扇形 弓形 环形 多边形 三角形 四边形 五边形 六边形 多边形 正多边形 梯形 平行四边形 菱形 矩形 正方形 鹞形 卵形线 梭形 星形 五角星 六角星 立体图形 多面体 正多面体 四面体 长方体 立方体 平行六面体 棱柱 反棱柱 棱锥 棱台 圆柱体 圆锥 圆台 椭球(长球体、扁球体) 球体 球缺 球冠 球台 准线 母线 曲面 二次曲面 旋转曲面 抛物面 双曲面 马鞍面 球面 椭球面 类球面 环面 莫比乌斯带 流形 黎曼曲面 高维空间 超平面 超面 超曲面 胞 多胞形 超球体 超方形 超立方体 克莱因瓶 四维柱体柱 图形关系 相似 全等 对称 平行 垂直 相交 相切 相离 镜像 旋转 反演 截面 缩放 三角形关系 相似三角形 全等三角形 量 距离 长度 周长 弧长 高度 面积 表面积 体积 容积 角度 曲率 挠率 离心率 凹凸性 有向曲面 可展曲面 直纹曲面 作图 尺 直尺 三角尺 圆规 尺规作图 二刻尺作图 分支 平面几何 立体几何 三角学 解析几何 微分几何 拓扑学 图论 折纸数学 欧几里得几何 非欧几里得几何(双曲几何、球面几何……) 分形 理论 定理 公理 定义 数学证明 分类 主题 共享资源 专题 查论编数学(数学领域) 历史 纲要(英语:Outlineofmathematics) 符号表 数学基础 范畴论 集合论 数理逻辑 数学哲学 代数 抽象代数 初等代数 线性代数 多重线性代数 泛代数 数学分析 微积分 实变函数 复变函数 微分方程 泛函分析 调和分析 离散数学 组合数学 图论 序理论 博弈论 几何学 代数几何 解析几何 微分几何 离散几何学 欧几里得几何 非欧几里得几何 有限几何学 数论 算术 代数数论 解析数论 几何数论 算术几何 丢番图几何 拓扑学 代数拓扑 微分拓扑 几何拓扑 统计学 测度与概率 数理统计学 数据科学 统计推断 回归分析 统计学习理论 机器学习 人工智能 数据结构与算法 计算数学 计算机科学 计算理论 数值分析 最优化 计算机代数 应用数学 控制论 信息论 计算化学 数理生物学 数理经济学 计量经济学 数理金融学 数学心理学 数学物理学 生物统计学 其它 数学史 娱乐数学 数学与艺术(英语:Mathematicsandart) 数学教育 注释 数学的领域也可根据“MSC分类标准”或“中国学科分类国家标准”进行分类。

分类 主题 共享资源 专题 取自“https://zh.wikipedia.org/w/index.php?title=几何学&oldid=67526567” 分类:​几何术语几何学隐藏分类:​使用ISBN魔术链接的页面含有英语的条目含有古希腊语的条目含有越南语的条目含有希腊语的条目 导航菜单 个人工具 没有登录讨论贡献创建账号登录 命名空间 条目讨论 新加坡简体 不转换简体繁體大陆简体香港繁體澳門繁體大马简体新加坡简体臺灣正體 查看 阅读编辑查看历史 更多 搜索 导航 首页分类索引特色内容新闻动态最近更改随机条目资助维基百科 帮助 帮助维基社群方针与指引互助客栈知识问答字词转换IRC即时聊天联络我们关于维基百科 工具 链入页面相关更改上传文件特殊页面固定链接页面信息引用本页维基数据项目 打印/导出 下载为PDF可打印版本 在其他项目中 维基共享资源 其他语言 AfrikaansAlemannischአማርኛAragonésالعربيةঅসমীয়াAsturianuAzərbaycancaتۆرکجهБашҡортсаŽemaitėškaBikolCentralБеларускаяБеларуская(тарашкевіца)БългарскиभोजपुरीBislamaবাংলাབོད་ཡིགBrezhonegBosanskiБуряадCatalàᏣᎳᎩکوردیCorsuČeštinaЧӑвашлаCymraegDanskDeutschZazakiΕλληνικάEmiliànerumagnòlEnglishEsperantoEspañolEestiEuskaraEstremeñuفارسیSuomiVõroNaVosaVakavitiFøroysktFrançaisNordfriiskGaeilge贛語KriyòlgwiyannenGàidhligGalegoAvañe'ẽગુજરાતીGaelg客家語/Hak-kâ-ngîעבריתहिन्दीFijiHindiHrvatskiKreyòlayisyenMagyarՀայերենInterlinguaBahasaIndonesiaInterlingueIlokanoIdoÍslenskaItalianoᐃᓄᒃᑎᑐᑦ/inuktitut日本語PatoisJawaქართულიQaraqalpaqshaTaqbaylitАдыгэбзэKabɩyɛGĩkũyũҚазақшаភាសាខ្មែរಕನ್ನಡ한국어KurdîKernowekКыргызчаLatinaLëtzebuergeschLinguaFrancaNovaLugandaLimburgsLigureLombardLingálaລາວLietuviųLatviešuМокшеньMalagasyОлыкмарийМакедонскиമലയാളംМонголဘာသာမန်मराठीBahasaMelayuMaltiMirandésမြန်မာဘာသာЭрзяньPlattdüütschनेपालीनेपालभाषाNederlandsNorsknynorskNorskbokmålNovialOccitanOromooଓଡ଼ିଆਪੰਜਾਬੀPolskiPiemontèisپنجابیپښتوPortuguêsRunaSimiRomânăРусскийРусиньскыйСахатылаSicilianuScotsسنڌيSrpskohrvatski/српскохрватскиසිංහලSimpleEnglishSlovenčinaSlovenščinaChiShonaSoomaaligaShqipСрпски/srpskiSeelterskSundaSvenskaKiswahiliŚlůnskiதமிழ்తెలుగుТоҷикӣไทยTürkmençeTagalogTürkçeXitsongaТатарча/tatarçaТывадылУкраїнськаاردوOʻzbekcha/ўзбекчаVènetoTiếngViệtWinaray吴语მარგალურიייִדיש文言Bân-lâm-gú粵語IsiZulu 编辑链接



請為這篇文章評分?