DNA測序- 维基百科,自由的百科全书
文章推薦指數: 80 %
DNA测序(英語:DNA sequencing)又稱DNA定序,是指分析特定DNA片段的碱基序列,也就是腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)與鳥嘌呤(G)的排列方式。
DNA測序
维基百科,自由的百科全书
跳到导航
跳到搜索
此條目需要擴充。
(2013年5月26日)请協助改善这篇條目,更進一步的信息可能會在討論頁或扩充请求中找到。
请在擴充條目後將此模板移除。
DNA测序(英語:DNAsequencing)又稱DNA定序,是指分析特定DNA片段的碱基序列,也就是腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)與鳥嘌呤(G)的排列方式。
快速的DNA测序方法的出现极大地推动了生物学和医学的研究和发现。
在基础生物学研究中,和在众多的应用领域,如诊断,生物技术,法医生物学,生物系统学中,DNA序列知识已成为不可缺少的知识。
具有现代的DNA测序技术的快速测序速度已经有助于达到测序完整的DNA序列,或多种类型的基因组测序和生命物种,包括人类基因组和其他许多动物,植物和微生物物种的完整DNA序列。
RNA測序則通常将RNA提取后,反转录为DNA后使用DNA测序的方法进行测序。
目前应用最广泛的是由弗雷德里克·桑格发明的桑格測序[1]。
新的测序方法,例如454生物科学的方法和焦磷酸测序法。
自动化chain-terminationDNA测序结果的一个例子。
目录
1应用
1.1分子生物学
1.2演化生物学
1.3宏基因组学(或元基因组学)
1.4医学
1.5法医学
2历史
2.1DNA结构与功能的发现
2.2RNA测序
2.3早期的DNA测序方法
2.4全基因组测序
2.5高通量測序(HTS)方法
3基本方法
3.1Maxam-Gilbert测序法
3.2Sanger测序法
4高级方法和denovo测序法
4.1霰彈槍定序法
4.2BridgePCR
5新一代测序
5.1454生物科学和焦磷酸测序法
6正在开发的测序法
6.1纳米孔DNA测序法
6.2高通量测序
7參見
8参考文献
应用[编辑]
DNA测序可用于确定任何生物的单个基因的序列,较大的遗传区域(即基因簇或操纵子的簇),完整的染色体或整个基因组。
DNA测序也是对RNA或蛋白质进行测序的最有效方法(通过对开放阅读框测序)。
目前,DNA测序已成为生物学和其他科学领域(如医学,法医学或人类学等)的关键技术。
分子生物学[编辑]
在分子生物学中,DNA测序可被用于研究基因组及其编码的蛋白质。
利用测序获得的信息,科研人员能够识别基因的变化,基因与疾病和表型的关联,并确定潜在的药物靶点。
演化生物学[编辑]
由于DNA是携带有遗传信息的大分子,在演化生物学中,DNA测序被用于研究不同生物体之间的相关性以及它们是如何演化的。
宏基因组学(或元基因组学)[编辑]
主条目:元基因組學
宏基因组学是一门直接取得环境中所有遗传物质的研究。
环境包括但不限于水体,污水,污垢,从空气中过滤出的碎片或者从生物体采集的样本。
了解在特定环境中存在哪些生物体对于生态学,流行病学,微生物学和其他领域的研究至关重要。
DNA测序使研究人员能够确定微生物群中可能存在哪些类型的微生物。
医学[编辑]
医疗人员可通过对患者基因(基因组)的测序结果确定该患者是否有携带遗传性疾病的风险。
需要注意的是,该方法属于基因检测,有些基因检测不会用到DNA测序技术。
法医学[编辑]
DNA测序可以与DNA图谱鉴定(基因指纹分析,英語:DNAprofiling)一起用于法医鉴定和亲子鉴定。
DNA测试在过去的几十年中发展迅猛,目前已能够做到将DNA鉴定结果与被调查对象联系起来。
指纹,唾液,毛囊等中的DNA特征可以将不同的生物体进行区分。
测试DNA是一种可以检测DNA链中特定基因组并生成唯一的个性化DNA模型的技术。
每一种有机体都有其DNA特征,并可以通过DNA测试来确定。
两个人具有完全相同的DNA特征是非常罕见的,因此保证了DNA测试的成功。
历史[编辑]
DNA结构与功能的发现[编辑]
弗雷德里克·桑格,DNA测序的先驱者。
桑格是少数获得两项诺贝尔奖的科学家之一,其中一项为蛋白质测序,另一项为DNA测序。
脱氧核糖核酸(DNA)最早在1869年由FriedrichMiescher发现并分离出来,但由于当时普遍认为遗传信息保存于蛋白质而不是DNA中,因此在过去几十年中DNA一直没有得到充分研究。
1944年,由于OswaldAvery,ColinMacLeod和MaclynMcCarty的一些实验表明,纯化的DNA可以将一种细菌变成另一种细菌,这种情况才发生了变化。
这也是首次DNA显示出改变细胞特性的能力。
1953年,JamesWatson和FrancisCrick根据RosalindFranklin研究的结晶X射线结构提出了他们的双螺旋DNA模型。
根据该模型,DNA由彼此缠绕的两条核苷酸链组成,通过氢键连接在一起并以相反方向运行。
每条链由四个互补的核苷酸组成:腺嘌呤(A),胞嘧啶(C),鸟嘌呤(G)和胸腺嘧啶(T),其中A与T配对,C与G配对。
他们提出的这种结构,使得每条单链都可被用于重建另一条链,并且让遗传信息代代相传。
对蛋白质进行测序的基础首先由弗雷德里克·桑格(FrederickSanger)的工作奠定,他于1955年完成了胰岛素(胰腺分泌的一种蛋白质)中所有氨基酸序列的测序工作。
这是首个确凿的证据证明蛋白质是具有特定分子模式的化学实体,而不是悬浮在流体中的随机混合物。
桑格在胰岛素测序方面的成功使得X射线晶体学家大为振奋,包括沃森和克里克,他们现在正试图理解DNA如何指导细胞内蛋白质的形成。
在1954年10月弗雷德里克·桑格出席一系列讲座后不久,克里克开始发展一种理论,认为DNA中核苷酸的排列决定了蛋白质中氨基酸的序列,从而帮助确定蛋白质的功能。
他于1958年发表了这一理论。
RNA测序[编辑]
RNA测序是最早的核苷酸测序形式之一。
RNA测序的主要标志是1972年和1976年WalterFiers及其同事在根特大学(根特,比利时)确定并发表的第一个完整基因序列和噬菌体MS2的完整基因组。
传统的RNA测序方法需要创建一个用于测序的互补cDNA(ComplementaryDNA)分子。
早期的DNA测序方法[编辑]
确定DNA序列的第一种方法涉及由康奈尔大学的吴瑞于1970年建立的位置特异性引物延伸策略[2]。
DNA聚合酶催化和特定核苷酸标记,这两者在当前的测序方案中都很重要,用于对λ噬菌体DNA的粘性末端进行测序[3][4][5]。
在1970年至1973年间,吴瑞、RPadmanabhan及其同事证明,该方法可用于使用合成的位置特异性引物确定任何DNA序列[6][7][8]。
随后弗雷德里克·桑格(FrederickSanger)采用这种引物延伸策略在英国剑桥的英國醫學研究委員會(MRC)中心开发了更快速的DNA测序方法,并于1977年发表了“使用链终止抑制剂进行DNA测序”的方法。
全基因组测序[编辑]
Φ-X174噬菌體(英语:PhiX174)的5,386bp基因組。
每個彩色塊代表一個基因。
第一个完整的DNA基因组测序是在1977年Φ-X174噬菌體(英语:PhiX174)(PhageΦ-X174)的测序工作。
医学研究委员会的科学家在1984年破译了Epstein-Barr病毒的完整DNA序列,发现它含有172,282个核苷酸。
该序列的完成标志着DNA测序的一个重要转折点,它在没有病毒基因谱知识的情况下实现了DNA测序。
20世纪80年代初,Pohl及其同事开发了一种在电泳时将测序反应混合物的DNA分子转移到固定基质上的非放射性方法。
随后GATCBiotech公司的DNA测序仪“Direct-Blotting-Electrophoresis-SystemGATC1500”商业化,该测序仪在EU基因组测序程序的框架以及酵母酿酒酵母染色体II的完整DNA序列中广泛使用。
加利福尼亚理工学院的LeroyE.Hood实验室于1986年宣布了第一台半自动DNA测序机。
随后,AppliedBiosystems在1987年推出了第一台全自动测序仪ABI370。
以及Dupont公司的Genesis2000,该仪器使用了一种新的荧光标记技术,可在单一泳道中识别所有四个双脱氧核苷酸。
到1990年,美国国立卫生研究院(NIH)已开始对支原体,大肠杆菌,秀丽隐杆线虫和酿酒酵母进行大规模测序实验,费用为每个碱基0.75美元。
同时,人类cDNA序列的测序始于CraigVenter的实验室,试图获取人类基因组的编码部分。
1995年,Venter,HamiltonSmith及其基因组研究所(TIGR)的同事发表了第一个完整的自由生物体细菌流感嗜血杆菌(Haemophilusinfluenzae)的基因组。
该环形染色体中含有1,830,137个碱基,其在《科学》杂志中的发表标志着全基因组鸟枪法测序的首次公开使用,摆脱了初始绘制工作的需要。
高通量測序(HTS)方法[编辑]
測序技術的歷史 [9]
1990年代中後期開發了幾種新的DNA測序方法,並於2000年在商業DNA測序儀中實施。
這些方法統稱為“下一代”或“第二代”測序(NGS)方法,以便將它們與包括桑格测序在內的早期方法區分開來。
與第一代測序相比,NGS技術的典型特徵是高度可擴展,允許一次對整個基因組進行測序。
通常,這是通過將基因組片段化成小塊、隨機採樣片段並使用多種技術之一對其進行測序來實現的,例如下面描述的那些。
整個基因組測序是可能的,因為在一個自動化過程中同時對多個片段進行測序(命名為“大規模並行”測序)。
1990年10月26日,钱永健、PepiRoss、MargaretFahnestock和AllanJJohnston提交了一項專利,描述了在DNA陣列(印跡和單個DNA分子)上使用可移除的3'阻斷劑進行逐步(“鹼基對鹼基”)測序[10]。
1996年,斯德哥爾摩皇家理工學院的波尔·尼伦(英语:PålNyrén)(PålNyrén)和他的學生穆斯塔法·罗纳吉(英语:MostafaRonaghi)(MostafaRonaghi)發表了他們的焦磷酸測序方法[11]。
1997年4月1日,PascalMayer(法语)和LaurentFarinelli向世界知識產權組織提交了描述DNA菌落測序的專利[12]。
本專利中描述的DNA樣品製備和隨機表面聚合酶链式反应(PCR)陣列方法,與钱永健等人的“鹼基對鹼基”測序方法相結合,現已在Illumina公司的Hi-Seq基因組測序儀中實施。
基本方法[编辑]
Maxam-Gilbert测序法[编辑]
主条目:马克萨姆-吉尔伯特测序
马克萨姆-吉尔伯特测序(英语:Maxam-Gilbertsequencing)是一项由阿伦·马克萨姆(英语:AllanMaxam)与沃尔特·吉尔伯特于1976~1977年间开发的DNA测序方法。
此项方法基于:对核鹼基特异性地进行局部化学改性,接下来在改性核苷酸毗邻的位点处DNA骨架发生断裂[13]。
Sanger测序法[编辑]
主条目:桑格测序
Sanger(桑格)双脱氧链终止法是弗雷德里克·桑格(FrederickSanger)于1975年发明的。
测序过程需要先做一个聚合酶连锁反应(PCR)。
PCR过程中,双脱氧核苷酸可能随机地被加入到正在合成中的DNA片段里。
由于双脱氧核糖核苷酸又少了一个氧原子,一旦它被加入到DNA链上,这个DNA链就不能继续增加长度。
最终的结果是获得所有可能获得的、不同长度的DNA片段。
目前最普遍最先进的方法,是将双脱氧核糖核苷酸进行不同荧光标记。
将PCR反应获得的总DNA通过毛细管电泳分离,跑到最末端的DNA就可以在激光的作用下发出荧光。
由于ddATP,ddGTP,ddCTP,ddTTP(4种双脱氧核糖核苷酸)荧光标记不同,计算机可以自动根据颜色判断该位置上碱基究竟是A,T,G,C中的哪一个[14]。
高级方法和denovo测序法[编辑]
霰彈槍定序法[编辑]
主条目:霰彈槍定序法
霰彈槍定序法(Shotgunsequencing,又称鸟枪法)是一种广泛使用的为较长DNA测序的方法。
它比傳統的定序法快速,但精確度較差。
霰彈槍定序法曾經使用於塞雷拉基因組(CeleraGenomics)公司所主持的人類基因組计划。
BridgePCR[编辑]
此章节尚無任何内容。
(2021年2月3日)
新一代测序[编辑]
主条目:大規模並行測序(英语:Massiveparallelsequencing)
随着人们对低成本测序的需求与日俱增,推动了高通量测序(high-throughputsequencing)的发展,此技术又称为二代测序、新一代测序、次世代测序;这些技术对测序过程采多路复用,同时产生上千或上百万条序列[15][16]。
高通量测序技术的目的是降低DNA测序的成本,这个成本比同样可实现测序的染料终止法来得低得多[17]。
超高通量测序过程中可同时运行高达500,000次的边合成边测序[18][19][20]。
新世代技術利用電腦科技,需要根据多个片段序列所重叠的区域,将它们全部组装起来。
新一代测序方法的比较[21][22]
方法
单分子实时测序(PacificBio)
离子半导体(IonTorrentsequencing)
焦磷酸测序(454)
边合成边测序(Illumina)
边连接边测序(SOLiDsequencing)
链终止法(Sangersequencing)
读长
5,500bpto8,500bpavg(10,000bpN50);maximumreadlength>30,000bases[23][24][25]
upto400bp
700bp
50to300bp
50+35or50+50bp
400to900bp
精确度
99.999%consensusaccuracy;87%single-readaccuracy[26]
98%
99.9%
98%
99.9%
99.9%
每次运行可获取读段数
50,000perSMRTcell,or~400megabases[27][28]
upto80million
1million
upto3billion
1.2to1.4billion
N/A
每次运行耗时
30minutesto2hours[29]
2hours
24hours
1to10days,dependinguponsequencerandspecifiedreadlength[30]
1to2weeks
20minutesto3hours
每百万碱基所耗成本(美元)
$0.33-$1.00
$1
$10
$0.05to$0.15
$0.13
$2400
优势
Longestreadlength.Fast.Detects4mC,5mC,6mA.[31]
Lessexpensiveequipment.Fast.
Longreadsize.Fast.
Potentialforhighsequenceyield,dependinguponsequencermodelanddesiredapplication.
Lowcostperbase.
Longindividualreads.Usefulformanyapplications.
劣势
Moderatethroughput.Equipmentcanbeveryexpensive.
Homopolymererrors.
Runsareexpensive.Homopolymererrors.
Equipmentcanbeveryexpensive.RequireshighconcentrationsofDNA.
Slowerthanothermethods.Haveissuesequencingpalindromicsequence.[32]
Moreexpensiveandimpracticalforlargersequencingprojects.
454生物科学和焦磷酸测序法[编辑]
454测序法由454生物科学发明,是一个类似焦磷酸测序法的新方法。
2003年向GenBank提交了一个腺病毒全序列[33],使得他们的技术成为Sanger测序法后第一个被用来测生物基因组全序列的新方法。
454使用类似于焦磷酸测序的方法,有着相当高的读取速度,大约为5小时可以测两千万碱基对[33]。
正在开发的测序法[编辑]
纳米孔DNA测序法[编辑]
主条目:纳米孔测序
高通量测序[编辑]
高通量测序能一次对几十到几百万DNA分子进行序列测定。
參見[编辑]
分子与细胞生物学主题
已測序的生物
参考文献[编辑]
^存档副本.[2006-11-17].(原始内容存档于2006-11-11).
^RayWuFacultyProfile.CornellUniversity.(原始内容存档于2009-03-04).
^PadmanabhanR,JayE,WuR.ChemicalsynthesisofaprimeranditsuseinthesequenceanalysisofthelysozymegeneofbacteriophageT4.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica.June1974,71(6):2510–4.Bibcode:1974PNAS...71.2510P.PMC 388489 .PMID 4526223.doi:10.1073/pnas.71.6.2510 .
^OnagaLA.RayWuasFifthBusiness:DemonstratingCollectiveMemoryintheHistoryofDNASequencing.StudiesintheHistoryandPhilosophyofScience.PartC.June2014,46:1–14.PMID 24565976.doi:10.1016/j.shpsc.2013.12.006.
^WuR.NucleotidesequenceanalysisofDNA.NatureNewBiology.1972,236(68):198–200.PMID 4553110.doi:10.1038/newbio236198a0.
^PadmanabhanR,WuR.NucleotidesequenceanalysisofDNA.IX.UseofoligonucleotidesofdefinedsequenceasprimersinDNAsequenceanalysis.Biochem.Biophys.Res.Commun.1972,48(5):1295–302.PMID 4560009.doi:10.1016/0006-291X(72)90852-2.
^WuR,TuCD,PadmanabhanR.NucleotidesequenceanalysisofDNA.XII.Thechemicalsynthesisandsequenceanalysisofadodecadeoxynucleotidewhichbindstotheendolysingeneofbacteriophagelambda.Biochem.Biophys.Res.Commun.1973,55(4):1092–99.PMID 4358929.doi:10.1016/S0006-291X(73)80007-5.
^JayE,BambaraR,PadmanabhanR,WuR.DNAsequenceanalysis:ageneral,simpleandrapidmethodforsequencinglargeoligodeoxyribonucleotidefragmentsbymapping.NucleicAcidsResearch.March1974,1(3):331–53.PMC 344020 .PMID 10793670.doi:10.1093/nar/1.3.331.
^Yang,Aimin;Zhang,Wei;Wang,Jiahao;Yang,Ke;Han,Yang;Zhang,Limin.ReviewontheApplicationofMachineLearningAlgorithmsintheSequenceDataMiningofDNA.FrontiersinBioengineeringandBiotechnology.2020,8:1032.PMC 7498545 .PMID 33015010.doi:10.3389/fbioe.2020.01032 .
^Espacenet–Bibliographicdata.worldwide.espacenet.com.[2021-12-04].(原始内容存档于2022-01-10).
^RonaghiM,KaramohamedS,PetterssonB,UhlénM,NyrénP.Real-timeDNAsequencingusingdetectionofpyrophosphaterelease.AnalyticalBiochemistry.1996,242(1):84–89.PMID 8923969.doi:10.1006/abio.1996.0432.
^Kawashima,EricH.;LaurentFarinelli;PascalMayer(法语).Patent:Methodofnucleicacidamplification.2005-05-12[2012-12-22].(原始内容存档于22February2013).
^MaxamAM,GilbertW.AnewmethodforsequencingDNA.Proc.Natl.Acad.Sci.U.S.A.February1977,74(2):560–4.Bibcode:1977PNAS...74..560M.PMC 392330 .PMID 265521.doi:10.1073/pnas.74.2.560.
^Sangersequencing.2020年3月20日[2020年3月27日].(原始内容存档于2020年3月29日)–通过Wikipedia.
^Hall,Nell.Advancedsequencingtechnologiesandtheirwiderimpactinmicrobiology.J.Exp.Biol.May2007,209(Pt9):1518–1525.PMID 17449817.doi:10.1242/jeb.001370.
^Church,GeorgeM.Genomesforall.Sci.Am.January2006,294(1):46–54.PMID 16468433.doi:10.1038/scientificamerican0106-46.
^引用错误:没有为名为pmid18165802的参考文献提供内容
^Kalb,Gilbert;Moxley,Robert.MassivelyParallel,Optical,andNeuralComputingintheUnitedStates.IOSPress.1992.ISBN 90-5199-097-9. [页码请求]
^JohnR.tenBosch,WayneW.Grody.Keepingupwiththenextgeneration:massivelyparallelsequencinginclinicaldiagnostics.TheJournalofmoleculardiagnostics:JMD.2008-11,10(6):484–492[2019-02-12].ISSN 1525-1578.PMC 2570630 .PMID 18832462.doi:10.2353/jmoldx.2008.080027.(原始内容存档于2019-06-12). 引文格式1维护:PMC格式(link)
^TracyTucker,MarcoMarra,JanM.Friedman.Massivelyparallelsequencing:thenextbigthingingeneticmedicine.AmericanJournalofHumanGenetics.2009-8,85(2):142–154[2019-02-12].ISSN 1537-6605.PMC 2725244 .PMID 19679224.doi:10.1016/j.ajhg.2009.06.022.(原始内容存档于2019-06-06). 请检查|date=中的日期值(帮助)引文格式1维护:PMC格式(link)
^Quail,Michael;Smith,MiriamE;Coupland,Paul;etal.Ataleofthreenextgenerationsequencingplatforms:comparisonofIontorrent,pacificbiosciencesandilluminaMiSeqsequencers.BMCGenomics.1January2012,13(1):341.PMC 3431227 .PMID 22827831.doi:10.1186/1471-2164-13-341.
^Liu,Lin;Li,Yinhu;Li,Siliang;etal.ComparisonofNext-GenerationSequencingSystems.JournalofBiomedicineandBiotechnology(HindawiPublishingCorporation).1January2012,2012:1–11.doi:10.1155/2012/251364.
^NewProducts:PacBio'sRSII;Cufflinks.GenomeWeb.[2020-03-27].(原始内容存档于2020-03-27).
^AfteraYearofTesting,TwoEarlyPacBioCustomersExpectMoreRoutineUseofRSSequencerin2012.GenomeWeb.10January2012[2014-02-08].(原始内容存档于2013-12-12).
^Inc,PacificBiosciencesofCalifornia.PacificBiosciencesIntroducesNewChemistryWithLongerReadLengthstoDetectNovelFeaturesinDNASequenceandAdvanceGenomeStudiesofLargeOrganisms.GlobeNewswireNewsRoom.2013年10月3日[2020年3月27日].(原始内容存档于2020年3月27日).
^Chin,Chen-Shan;Alexander,DavidH.;Marks,Patrick;Klammer,AaronA.;Drake,James;Heiner,Cheryl;Clum,Alicia;Copeland,Alex;Huddleston,John;Eichler,EvanE.;Turner,StephenW.;Korlach,Jonas.Nonhybrid,finishedmicrobialgenomeassembliesfromlong-readSMRTsequencingdata.NatureMethods.2013年6月27日,10(6):563–569[2020年3月27日].doi:10.1038/nmeth.2474.(原始内容存档于2020年3月29日)–通过www.nature.com.
^Denovobacterialgenomeassembly:asolvedproblem?.2013年7月5日[2020年3月27日].(原始内容存档于2020年3月27日).
^Rasko,DavidA.;Webster,DaleR.;Sahl,JasonW.;etal.OriginsoftheStrainCausinganOutbreakofHemolytic–UremicSyndromeinGermany.NEnglJMed.25August2011,365(8):709–717.doi:10.1056/NEJMoa1106920.
^Tran,Ben;Brown,AndrewM.K.;Bedard,PhilippeL.;Winquist,Eric;Goss,GlenwoodD.;Hotte,SebastienJ.;Welch,StephenA.;Hirte,HalW.;Zhang,Tong;Stein,LincolnD.;Ferretti,Vincent;Watt,Stuart;Jiao,Wei;Ng,Karen;Ghai,Sangeet;Shaw,Patricia;Petrocelli,Teresa;Hudson,ThomasJ.;Neel,BenjaminG.;etal.Feasibilityofrealtimenextgenerationsequencingofcancergeneslinkedtodrugresponse:Resultsfromaclinicaltrial.Int.J.Cancer.1January2012:1547–1555.doi:10.1002/ijc.27817.
^vanVliet,ArnoudH.M.Nextgenerationsequencingofmicrobialtranscriptomes:challengesandopportunities.FEMSMicrobiologyLetters.1January2010,302(1):1–7.doi:10.1111/j.1574-6968.2009.01767.x.
^Murray,I.A.;Clark,T.A.;Morgan,R.D.;Boitano,M.;Anton,B.P.;Luong,K.;Fomenkov,A.;Turner,S.W.;Korlach,J.;Roberts,R.J.Themethylomesofsixbacteria.NucleicAcidsResearch.2October2012,40(22):11450–62.PMC 3526280 .PMID 23034806.doi:10.1093/nar/gks891. 引文使用过时参数coauthors(帮助)
^Yu-FengHuang,Sheng-ChungChen,Yih-ShienChiang,Tzu-HanChen&Kuo-PingChiu.Palindromicsequenceimpedessequencing-by-ligationmechanism.BMCsystemsbiology.2012,.6Suppl2:S10.PMID 23281822.doi:10.1186/1752-0509-6-S2-S10.
^33.033.1About454-Overview.[2006-11-17].(原始内容存档于2006-10-29).
查论编已测序物種基因組病毒Lambdaphage ·SV40细菌流感嗜血桿菌 ·大腸桿菌 ·黴漿菌古菌Acidilobussaccharovorans真核生物動物秀麗隱桿線蟲 ·黑腹果蠅 ·人類 ·老鼠 ·大鼠 ·黑猩猩 ·海鞘 ·狗 ·埃及血吸虫植物拟南芥 ·水稻 ·苹果 ·草莓 ·木豆 ·苜蓿 ·木瓜 ·葡萄 ·盐芥 ·毛竹 ·梨真菌釀酒酵母 ·灵芝[1]
查论编生物信息学数据库
测序数据库:GenBank、EuropeanNucleotideArchive(英语:EuropeanNucleotideArchive)、日本DNA数据库(DDBJ)
辅助数据库:UniProt,databaseofproteinsequencesgroupingtogetherSwiss-Prot,TrEMBL和蛋白质信息资源(英语:ProteinInformationResource)
其它数据库:蛋白質資料庫,Ensembl,和InterPro(英语:InterPro)
专项基因组数据库:酵母基因组数据库(英语:SaccharomycesGenomeDatabase)、FlyBase(英语:FlyBase)、VectorBase(英语:VectorBase)、PomBase、WormBase(英语:WormBase)、PHI-base(英语:PHI-base)、拟南芥信息资源(英语:TheArabidopsisInformationResource)与斑马鱼信息网(英语:ZebrafishInformationNetwork)
软件
BLAST
Bowtie
Clustal
EMBOSS(英语:EMBOSS)
HMMER(英语:HMMER)
MUSCLE
SAMtools(英语:SAMtools)
TopHat(英语:TopHat(bioinformatics))
其它
服务器:ExPASy(英语:ExPASy)
本体论:基因本体
机构
欧洲生物信息研究所(EMBL-EBI)
欧洲分子生物学实验室(EMBL)
美国国家生物技术信息中心(NCBI)
瑞士生物信息学研究所(英语:SwissInstituteofBioinformatics)
日本國立遺傳學研究所
博德研究所(英语:BroadInstitute)
维康桑格研究所
斯克里普斯研究所(TSRI)
文件格式
FASTA格式
FASTQ格式
斯德哥尔摩格式(英语:Stockholmformat)
有关议题
计算生物学
分子系统发生学
测序
序列比對
分类
维基共享
取自“https://zh.wikipedia.org/w/index.php?title=DNA測序&oldid=70947319”
分类:DNA测序分子生物学技术隐藏分类:有参考文献错误的页面多語言連結模板參數編號含有連結內容需訂閱查看的頁面未列明參考文獻頁碼的條目引文格式1维护:PMC格式引文格式1错误:日期含有內容需登入查看的頁面含有过时参数的引用的页面自2013年5月扩充中的条目含有英語的條目自2021年2月扩充中的条目所有扩充中的条目自2021年2月包含空白章節的條目所有包含空白章節的條目使用小型訊息框的頁面
导航菜单
个人工具
没有登录讨论贡献创建账号登录
命名空间
条目讨论
不转换
不转换简体繁體大陆简体香港繁體澳門繁體大马简体新加坡简体臺灣正體
查看
阅读编辑查看历史
更多
搜索
导航
首页分类索引特色内容新闻动态最近更改随机条目资助维基百科
帮助
帮助维基社群方针与指引互助客栈知识问答字词转换IRC即时聊天联络我们关于维基百科
工具
链入页面相关更改上传文件特殊页面固定链接页面信息引用本页维基数据项目
打印/导出
下载为PDF打印页面
在其他项目中
维基共享资源
其他语言
العربيةবাংলাBosanskiCatalàČeštinaDanskDeutschEnglishEsperantoEspañolEestiفارسیSuomiFrançaisGalegoעבריתHrvatskiMagyarՀայերենBahasaIndonesiaÍslenskaItaliano日本語Jawa한국어LietuviųBahasaMelayuNederlandsNorskbokmålPolskiPortuguêsRomânăSrpskohrvatski/српскохрватскиСрпски/srpskiSvenskaKiswahiliதமிழ்ไทยTürkçeУкраїнськаTiếngViệtBân-lâm-gú
编辑链接
延伸文章資訊
- 1紧凑型毛细管电泳DNA测序仪DS3000 : 日立高新技术在中国
日立DNA测序仪操作简便,体积小巧! DS3000具备“触摸屏式、布局直观、便于操作”、“耗材采用卡槽式包装,安装简便”、“设计紧凑,节省空间”几大特点。可轻松完成测序与 ...
- 2DNA測序- 维基百科,自由的百科全书
DNA测序(英語:DNA sequencing)又稱DNA定序,是指分析特定DNA片段的碱基序列,也就是腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)與鳥嘌呤(G)的排列方式。
- 3基因/DNA测序仪-价格参数指标-分析测试百科网
分析测试百科网基因/DNA测序仪频道为您提供基因/DNA测序仪的价格、参数指标、仪器原理和使用方法,也提供基因/DNA测序仪对比、评测,在这里您可以了解基因/DNA测序仪在 ...
- 4一文读懂“一代、二代、三代基因测序仪” - 知乎专栏
基因测序仪,顾名思义是检测DNA或RNA片段的碱基顺序、种类和定量的仪器。比较宽泛的说,基因是核酸中储存遗传信息的遗传单位,基因的不同决定了生物体的 ...
- 5DNA测序仪_百度百科
DNA测序仪原理 ... 分析结果能以凝胶电泳图谱、荧光吸收峰图或碱基排列顺序等多种形式输出。 它是一台能自动灌胶、自动进样、自动数据收集分析等全自动电脑控制的测定dna片段 ...