What is Big Data Analytics and Why is it Important? - TechTarget
文章推薦指數: 80 %
Learn how big data analytics works, the importance it can have for the businesses that use it, and how it can help increase revenues and improve business ... Home Datascienceandanalytics Analytics bigdataanalytics TechAccelerator Theultimateguidetobigdataforbusinesses ViewMore Sharethisitemwithyournetwork: By WesleyChai, TechnicalWriter MarkLabbe CraigStedman, IndustryEditor Whatisbigdataanalytics? Bigdataanalyticsistheoftencomplexprocessofexaminingbigdatatouncoverinformation--suchashiddenpatterns,correlations,markettrendsandcustomerpreferences--thatcanhelporganizationsmakeinformedbusinessdecisions. Onabroadscale,dataanalyticstechnologiesandtechniquesgiveorganizationsawaytoanalyzedatasetsandgathernewinformation.Businessintelligence(BI)queriesanswerbasicquestionsaboutbusinessoperationsandperformance. Bigdataanalyticsisaformofadvancedanalytics,whichinvolvecomplexapplicationswithelementssuchaspredictivemodels,statisticalalgorithmsandwhat-ifanalysispoweredbyanalyticssystems. Whyisbigdataanalyticsimportant? Organizationscanusebigdataanalyticssystemsandsoftwaretomakedata-drivendecisionsthatcanimprovebusiness-relatedoutcomes.Thebenefitsmayincludemoreeffectivemarketing,newrevenueopportunities,customerpersonalizationandimprovedoperationalefficiency.Withaneffectivestrategy,thesebenefitscanprovidecompetitiveadvantagesoverrivals. Thisarticleispartof Theultimateguidetobigdataforbusinesses Whichalsoincludes: 8benefitsofusingbigdataforbusinesses Whatabigdatastrategyincludesandhowtobuildone 10bigdatachallengesandhowtoaddressthem Download1 DownloadthisentireguideforFREEnow! Howdoesbigdataanalyticswork? Dataanalysts,datascientists,predictivemodelers,statisticiansandotheranalyticsprofessionalscollect,process,cleanandanalyzegrowingvolumesofstructuredtransactiondataaswellasotherformsofdatanotusedbyconventionalBIandanalyticsprograms. Hereisanoverviewofthefourstepsofthebigdataanalyticsprocess: Dataprofessionalscollectdatafromavarietyofdifferentsources.Often,itisamixofsemistructuredandunstructureddata.Whileeachorganizationwillusedifferentdatastreams,somecommonsourcesinclude: internetclickstreamdata; webserverlogs; cloudapplications; mobileapplications; socialmediacontent; textfromcustomeremailsandsurveyresponses; mobilephonerecords;and machinedatacapturedbysensorsconnectedtotheinternetofthings(IoT). Dataispreparedandprocessed.Afterdataiscollectedandstoredinadatawarehouseordatalake,dataprofessionalsmustorganize,configureandpartitionthedataproperlyforanalyticalqueries.Thoroughdatapreparationandprocessingmakesforhigherperformancefromanalyticalqueries. Dataiscleansedtoimproveitsquality.Dataprofessionalsscrubthedatausingscriptingtoolsordataqualitysoftware.Theylookforanyerrorsorinconsistencies,suchasduplicationsorformattingmistakes,andorganizeandtidyupthedata. Thecollected,processedandcleaneddataisanalyzedwithanalyticssoftware.Thisincludestoolsfor: datamining,whichsiftsthroughdatasetsinsearchofpatternsandrelationships predictiveanalytics,whichbuildsmodelstoforecastcustomerbehaviorandotherfutureactions,scenariosandtrends machinelearning,whichtapsvariousalgorithmstoanalyzelargedatasets deeplearning,whichisamoreadvancedoffshootofmachinelearning textminingandstatisticalanalysissoftware artificialintelligence(AI) mainstreambusinessintelligencesoftware datavisualizationtools Keybigdataanalyticstechnologiesandtools Manydifferenttypesoftoolsandtechnologiesareusedtosupportbigdataanalyticsprocesses.Commontechnologiesandtoolsusedtoenablebigdataanalyticsprocessesinclude: Hadoop,whichisanopensourceframeworkforstoringandprocessingbigdatasets.Hadoopcanhandlelargeamountsofstructuredandunstructureddata. Predictiveanalyticshardwareandsoftware,whichprocesslargeamountsofcomplexdata,andusemachinelearningandstatisticalalgorithmstomakepredictionsaboutfutureeventoutcomes.Organizationsusepredictiveanalyticstoolsforfrauddetection,marketing,riskassessmentandoperations. Streamanalyticstools,whichareusedtofilter,aggregateandanalyzebigdatathatmaybestoredinmanydifferentformatsorplatforms. Distributedstoragedata,whichisreplicated,generallyonanon-relationaldatabase.Thiscanbeasameasureagainstindependentnodefailures,lostorcorruptedbigdata,ortoprovidelow-latencyaccess. NoSQLdatabases,whicharenon-relationaldatamanagementsystemsthatareusefulwhenworkingwithlargesetsofdistributeddata.Theydonotrequireafixedschema,whichmakesthemidealforrawandunstructureddata. Adatalakeisalargestoragerepositorythatholdsnative-formatrawdatauntilitisneeded.Datalakesuseaflatarchitecture. Adatawarehouse,whichisarepositorythatstoreslargeamountsofdatacollectedbydifferentsources.Datawarehousestypicallystoredatausingpredefinedschemas. Knowledgediscovery/bigdataminingtools,whichenablebusinessestominelargeamountsofstructuredandunstructuredbigdata. In-memorydatafabric,whichdistributeslargeamountsofdataacrosssystemmemoryresources.Thishelpsprovidelowlatencyfordataaccessandprocessing. Datavirtualization,whichenablesdataaccesswithouttechnicalrestrictions. Dataintegrationsoftware,whichenablesbigdatatobestreamlinedacrossdifferentplatforms,includingApache,Hadoop,MongoDBandAmazonEMR. Dataqualitysoftware,whichcleansesandenricheslargedatasets. Datapreprocessingsoftware,whichpreparesdataforfurtheranalysis.Dataisformattedandunstructureddataiscleansed. Spark,whichisanopensourceclustercomputingframeworkusedforbatchandstreamdataprocessing. Bigdataanalyticsapplicationsoftenincludedatafrombothinternalsystemsandexternalsources,suchasweatherdataordemographicdataonconsumerscompiledbythird-partyinformationservicesproviders.Inaddition,streaminganalyticsapplicationsarebecomingcommoninbigdataenvironmentsasuserslooktoperformreal-timeanalyticsondatafedintoHadoopsystemsthroughstreamprocessingengines,suchasSpark,FlinkandStorm. Earlybigdatasystemsweremostlydeployedonpremises,particularlyinlargeorganizationsthatcollected,organizedandanalyzedmassiveamountsofdata.Butcloudplatformvendors,suchasAmazonWebServices(AWS),GoogleandMicrosoft,havemadeiteasiertosetupandmanageHadoopclustersinthecloud.ThesamegoesforHadoopsupplierssuchasCloudera,whichsupportsthedistributionofthebigdataframeworkontheAWS,GoogleandMicrosoftAzureclouds.Userscannowspinupclustersinthecloud,runthemforaslongastheyneedandthentakethemofflinewithusage-basedpricingthatdoesn'trequireongoingsoftwarelicenses. Bigdatahasbecomeincreasinglybeneficialinsupplychainanalytics.Bigsupplychainanalyticsutilizesbigdataandquantitativemethodstoenhancedecision-makingprocessesacrossthesupplychain.Specifically,bigsupplychainanalyticsexpandsdatasetsforincreasedanalysisthatgoesbeyondthetraditionalinternaldatafoundonenterpriseresourceplanning(ERP)andsupplychainmanagement(SCM)systems.Also,bigsupplychainanalyticsimplementshighlyeffectivestatisticalmethodsonnewandexistingdatasources. Bigdataanalyticsisaformofadvancedanalytics,whichhasmarkeddifferencescomparedtotraditionalBI. Bigdataanalyticsusesandexamples Herearesomeexamplesofhowbigdataanalyticscanbeusedtohelporganizations: Customeracquisitionandretention.Consumerdatacanhelpthemarketingeffortsofcompanies,whichcanactontrendstoincreasecustomersatisfaction.Forexample,personalizationenginesforAmazon,NetflixandSpotifycanprovideimprovedcustomerexperiencesandcreatecustomerloyalty. Targetedads.Personalizationdatafromsourcessuchaspastpurchases,interactionpatternsandproductpageviewinghistoriescanhelpgeneratecompellingtargetedadcampaignsforusersontheindividuallevelandonalargerscale. Productdevelopment.Bigdataanalyticscanprovideinsightstoinformaboutproductviability,developmentdecisions,progressmeasurementandsteerimprovementsinthedirectionofwhatfitsabusiness'customers. Priceoptimization.Retailersmayoptforpricingmodelsthatuseandmodeldatafromavarietyofdatasourcestomaximizerevenues. Supplychainandchannelanalytics.Predictiveanalyticalmodelscanhelpwithpreemptivereplenishment,B2Bsuppliernetworks,inventorymanagement,routeoptimizationsandthenotificationofpotentialdelaystodeliveries. Riskmanagement.Bigdataanalyticscanidentifynewrisksfromdatapatternsforeffectiveriskmanagementstrategies. Improveddecision-making.Insightsbusinessusersextractfromrelevantdatacanhelporganizationsmakequickerandbetterdecisions. Bigdataanalyticsbenefits Thebenefitsofusingbigdataanalyticsinclude: Quicklyanalyzinglargeamountsofdatafromdifferentsources,inmanydifferentformatsandtypes. Rapidlymakingbetter-informeddecisionsforeffectivestrategizing,whichcanbenefitandimprovethesupplychain,operationsandotherareasofstrategicdecision-making. Costsavings,whichcanresultfromnewbusinessprocessefficienciesandoptimizations. Abetterunderstandingofcustomerneeds,behaviorandsentiment,whichcanleadtobettermarketinginsights,aswellasprovideinformationforproductdevelopment. Improved,betterinformedriskmanagementstrategiesthatdrawfromlargesamplesizesofdata. Bigdataanalyticsinvolvesanalyzingstructuredandunstructureddata. Bigdataanalyticschallenges Despitethewide-reachingbenefitsthatcomewithusingbigdataanalytics,itsusealsocomeswithchallenges: Accessibilityofdata.Withlargeramountsofdata,storageandprocessingbecomemorecomplicated.Bigdatashouldbestoredandmaintainedproperlytoensureitcanbeusedbylessexperienceddatascientistsandanalysts. Dataqualitymaintenance.Withhighvolumesofdatacominginfromavarietyofsourcesandindifferentformats,dataqualitymanagementforbigdatarequiressignificanttime,effortandresourcestoproperlymaintainit. Datasecurity.Thecomplexityofbigdatasystemspresentsuniquesecuritychallenges.Properlyaddressingsecurityconcernswithinsuchacomplicatedbigdataecosystemcanbeacomplexundertaking. Choosingtherighttools.Selectingfromthevastarrayofbigdataanalyticstoolsandplatformsavailableonthemarketcanbeconfusing,soorganizationsmustknowhowtopickthebesttoolthatalignswithusers'needsandinfrastructure. Withapotentiallackofinternalanalyticsskillsandthehighcostofhiringexperienceddatascientistsandengineers,someorganizationsarefindingithardtofillthegaps. Historyandgrowthofbigdataanalytics Thetermbigdatawasfirstusedtorefertoincreasingdatavolumesinthemid-1990s.In2001,DougLaney,thenananalystatconsultancyMetaGroupInc.,expandedthedefinitionofbigdata.Thisexpansiondescribedtheincreasing: Volumeofdatabeingstoredandusedbyorganizations; Varietyofdatabeinggeneratedbyorganizations;and Velocity,orspeed,inwhichthatdatawasbeingcreatedandupdated. Thosethreefactorsbecameknownasthe3Vsofbigdata.GartnerpopularizedthisconceptafteracquiringMetaGroupandhiringLaneyin2005. AnothersignificantdevelopmentinthehistoryofbigdatawasthelaunchoftheHadoopdistributedprocessingframework.HadoopwaslaunchedasanApacheopensourceprojectin2006.Thisplantedtheseedsforaclusteredplatformbuiltontopofcommodityhardwareandthatcouldrunbigdataapplications.TheHadoopframeworkofsoftwaretoolsiswidelyusedformanagingbigdata. By2011,bigdataanalyticsbegantotakeafirmholdinorganizationsandthepubliceye,alongwithHadoopandvariousrelatedbigdatatechnologies. Initially,astheHadoopecosystemtookshapeandstartedtomature,bigdataapplicationswereprimarilyusedbylargeinternetande-commercecompaniessuchasYahoo,GoogleandFacebook,aswellasanalyticsandmarketingservicesproviders. Morerecently,abroadervarietyofusershaveembracedbigdataanalyticsasakeytechnologydrivingdigitaltransformation.Usersincluderetailers,financialservicesfirms,insurers,healthcareorganizations,manufacturers,energycompaniesandotherenterprises. ThiswaslastupdatedinDecember2021 ContinueReadingAboutbigdataanalytics Howtobuildanall-purposebigdatapipelinearchitecture 6bigdatabenefitsforbusinesses Howtobuildanenterprisebigdatastrategyin4steps 10bigdatachallengesandhowtoaddressthem Top25bigdataglossarytermsyoushouldknow RelatedTerms datacuration Datacurationistheprocessofcreating,organizingandmaintainingdatasetssotheycanbeaccessedandusedbypeoplelooking... See complete definition logisticregression Logisticregressionisastatisticalanalysismethodtopredictabinaryoutcome,suchasyesorno,basedonpriorobservations... See complete definition Whatisdatapreparation?Anin-depthguidetodataprep Datapreparationistheprocessofgathering,combining,structuringandorganizingdatasoitcanbeusedinbusiness... See complete definition DigDeeperonDatascienceandanalytics Hadoopvs.Spark:Anin-depthbigdataframeworkcomparison By:George Lawton CompareHadoopvs.Sparkvs.Kafkaforyourbigdatastrategy By:Daniel Robinson Hadoop By:Craig Stedman Hadoopasaservice(HaaS) By:Sarah Wilson LatestTechTargetresources DataManagement AWS ContentManagement Oracle SAP SQLServer SearchDataManagement DirectusbringsOpenDataPlatformtechnologytothecloud Thevendor'snewmanagedcloudserviceisdesignedtoenableorganizationstoconnectapplications,businessintelligenceand... Dremioopensupdatalakehousewithnewengine ThedatalakehousevendorisexpandingitscloudplatformwithanewSQLqueryengineanddatametastorefordatalakesthat... AnomaloPulsedashboardaimsfordataqualityinsights Thestartupisenhancingitsplatformbyprovidinguserswithanewdashboardthatbringsvisibilityintothestateofdataused... SearchAWS InsearchofAWSSolutionsArchitectpreparation? Thinkyou'rereadyfortheAWSCertifiedSolutionsArchitectcertificationexam?Testyourknowledgewiththese12questions,and... ExpertsraiseprivacyconcernsoverAmazonfleetsurveillance Amazonsaiditsvanmonitoringsystemisdesignedsolelyfordriversafety.Butmanyindustryexpertshaveconcernsregardingthe... Here'swhyAmazon'sglobalexpansionwon'tcomeeasy Amazonwouldliketostrengthenitsglobalfootprint,butthee-commercegiantfacesroadblocksandchallengestodaythatdidnot... SearchContentManagement Thetop5contentmanagementtrendsin2022 Thetopfivecontentmanagementtrendsof2022focusonflexibilityandefficiency,asorganizationsfacechallengesrelatedto... SalesforceMediaCloud,AWSpartnerforstreamingvideo Ascord-cuttersgiverisetostreamingservices'popularity,SalesforceandAWSpartnertocapitalizeoneachother'sstrengths:... BoxintegrationwithSlack,Teamsenablessecurefilesharing BoxexpandsSlackintegrationtobecomeSlack'scontentlayerforBoxusersandaddsecurityforsharingdocuments;Dropboxjoins... SearchOracle WithCerner,OracleCloudInfrastructuregetsaboost OracleplanstoacquireCernerinadealvaluedatabout$30B.Thesecond-largestEHRvendorintheU.S.couldinjectnewlife... SupremeCourtsideswithGoogleinOracleAPIcopyrightsuit TheSupremeCourtruled6-2thatJavaAPIsusedinAndroidphonesarenotsubjecttoAmericancopyrightlaw,endinga... OracleAutonomousDatabaseshiftsITfocustostrategicplanning ThishandbooklooksatwhatOracleAutonomousDatabaseofferstoOracleusersandissuesthatorganizationsshouldconsider... SearchSAP SAPBusinessByDesignvs.SAPS/4HANA:Acomparison Afteryearsofevolution,BusinessByDesignhasfoundasweetspotinSaaSERPforSMBsandthepublicsectorcomparedwithS/... AshortguidetoprimarySAPS/4HANAmodulesandLOBs SAPgroupsS/4HANAmodulesaroundlinesofbusiness.Here'saquickoverviewofmodulesandfeaturesforfinance,HCM,... 9topSAPS/4HANAbenefitsforbusinesses Fortoday'shighlynimblebusinessmodels,SAPS/4HANAcanprovidespeed,flexibility,simplicity,fasteranalytics,lowercosts... SearchSQLServer SQLServerdatabasedesignbestpracticesandtipsforDBAs GooddatabasedesignisamusttomeetprocessingneedsinSQLServersystems.Inawebinar,consultantKoenVerbeeckoffered... SQLServerinAzuredatabasechoicesandwhattheyofferusers SQLServerdatabasescanbemovedtotheAzurecloudinseveraldifferentways.Here'swhatyou'llgetfromeachoftheoptions... UsingaLEFTOUTERJOINvs.RIGHTOUTERJOINinSQL Inthisbookexcerpt,you'lllearnLEFTOUTERJOINvs.RIGHTOUTERJOINtechniquesandfindvariousexamplesforcreatingSQL... Close
延伸文章資訊
- 1Operating Room Efficiency: driving improvements with the use ...
THE DATA-DRIVEN SOLUTION FOR OPERATING ROOM EFFICIENCY ... 20 percentage-point increase in first-...
- 2Big data analytics and firm performance: Findings from a ...
Despite the growing number of firms that are launching big data ... generate critical insight, an...
- 38 Ways to Improve Operating Room Efficiency - CaseCTRL Blog ...
- 4More cases start on time after nurses change workflow - OR Manager
- 5Big data analytics in healthcare: promise and potential - NCBI
The potential for big data analytics in healthcare to lead to better outcomes exists across many ...