Transgenic Mouse Models in Cancer Research - Frontiers

文章推薦指數: 80 %
投票人數:10人

Transgenic mice, in which the gene is depleted or silenced to cause a loss of gene function, are called knockout mice. These mice provide ... ThisarticleispartoftheResearchTopic CancerModels Viewall 14 Articles Articles MichaelBreitenbach UniversityofSalzburg,Austria ReinhardUllmann InstitutfürRadiobiologiederBundeswehr,UniversitätUlm,Germany MartinHolcmann MedicalUniversityofVienna,Austria Theeditorandreviewers'affiliationsarethelatestprovidedontheirLoopresearchprofilesandmaynotreflecttheirsituationatthetimeofreview. Abstract Introduction ProductionofTransgenicMice TypesofTransgenicMice NewMouseModelsforCancerResearch CurrentDirectionsinTransgenicMouseCancerModels Conclusion AuthorContributions ConflictofInterestStatement Acknowledgments References SuggestaResearchTopic> DownloadArticle DownloadPDF ReadCube EPUB XML(NLM) Supplementary Material Exportcitation EndNote ReferenceManager SimpleTEXTfile BibTex totalviews ViewArticleImpact SuggestaResearchTopic> SHAREON OpenSupplementalData REVIEWarticle Front.Oncol.,20July2018 |https://doi.org/10.3389/fonc.2018.00268 TransgenicMouseModelsinCancerResearch UrsaLamprehtTratar1, SimonHorvat2andMajaCemazar1,3* 1DepartmentofExperimentalOncology,InstituteofOncologyLjubljana,Ljubljana,Slovenia 2BiotechnicalFaculty,UniversityofLjubljana,Ljubljana,Slovenia 3FacultyofHealthSciences,UniversityofPrimorska,Isola,Slovenia Theuseofexistingmousemodelsincancerresearchisofutmostimportanceastheyaimtoexplorethecasuallinkbetweencandidatecancergenesandcarcinogenesisaswellastoprovidemodelstodevelopandtestnewtherapies.However,fasterprogressintranslatingmousecancermodelresearchintotheclinichasbeenhamperedduetothelimitationsofthesemodelstobetterreflectthecomplexitiesofhumantumors.Traditionally,immunocompetentandimmunodeficientmicewithsyngeneicandxenograftedtumorstransplantedsubcutaneouslyororthotopicallyhavebeenused.Thesemodelsarestillbeingwidelyemployedformanydifferenttypesofstudies,inpartduetotheirwidespreadavailabilityandlowcost.Othertypesofmousemodelsusedincancerresearchcomprisetransgenicmiceinwhichoncogenescanbeconstitutivelyorconditionallyexpressedandtumor-suppressorgenessilencedusingconventionalmethods,suchasretroviralinfection,microinjectionofDNAconstructs,andtheso-called“gene-targetedtransgene”approach.Thesetraditionaltransgenicmodelshavebeenveryimportantinstudiesofcarcinogenesisandtumorpathogenesis,aswellasinstudiesevaluatingthedevelopmentofresistancetotherapy.Recently,theclusteredregularlyinterspacedshortpalindromicrepeats(CRISPR)-basedgenomeeditingapproachhasrevolutionizedthefieldofmousecancermodelsandhashadaprofoundandrapidimpactonthedevelopmentofmoreeffectivesystemstostudyhumancancers.TheCRISPR/Cas9-basedtransgenicmodelshavethecapacitytoengineerawidespectrumofmutationsfoundinhumancancersandprovidesolutionstoproblemsthatwerepreviouslyunsolvable.Recently,humanizedmousexenograftmodelsthatacceptpatient-derivedxenograftsandCD34+cellsweredevelopedtobettermimictumorheterogeneity,thetumormicroenvironment,andcross-talkbetweenthetumorandstromal/immunecells.Thesefeaturesmakethemextremelyvaluablemodelsfortheevaluationofinvestigationalcancertherapies,specificallynewimmunotherapies.Takentogether,improvementsinboththeCRISPR/Cas9systemproducingmorevalidmousemodelsandinthehumanizedmousexenograftmodelsresemblingcomplexinteractionsbetweenthetumoranditsenvironmentmightrepresentoneofthesuccessfulpathwaystopreciseindividualizedcancertherapy,leadingtoimprovedcancerpatientsurvivalandqualityoflife. Introduction Themouseasamodelforhumancancerresearchhasproventobeausefultoolduetotherelativelysimilargenomicandphysiologicalcharacteristicsoftumorbiologybetweenmiceandhumans.Micehaveseveralsimilaranatomical,cellular,andmolecularcharacteristicstohumansthatareknowntohavecriticalpropertiesandfunctionsincancer.Additionally,theproportionofmousegeneswithahumanorthologis80%(1),thusprovidinganexcellentexperimentallytractablemodelsystemasaresearchtooltoinvestigatebasicmechanismsofcancerdevelopmentaswellasresponsestotreatment(2).Althoughconventionaltransgenicmousemodelshaveremainedavaluabletooltoexaminethemolecularmechanismsofcarcinogenesis,alimitationhasbeenalowdegreeofheterogeneityinmousetumorsincomparisontotheveryheterogeneoushumantumors.Severaladvanceshavebeenmadeinmodelingcancerinmice,andthenewmodelsdescribedinthisreviewarenowmorecapableofmodelinghumancancerswithmutationsthatarecontrolledspatiallyand/ortemporally.Inaddition,thesemodelsbetteraddresstumorheterogeneityandinter-patientvariabilityintheclinicalsetting(3). Traditionally,immunocompetentandimmunodeficientmicewithsyngeneicandxenograftedtumorstransplantedsubcutaneouslyororthotopicallyhavebeenused.Thesemodelsarestillwidelyappliedformanydifferenttypesofstudiesandarealsoaffordable(4).However,intheearly1980s,newtypesofmousemodelsemergedwithengineeredmutationsintheirgenomethatrevolutionizedcancerresearch.In1974,R.JaenischandB.Mintzperformedanexperimentwhereintheviraloncogenesfromsimianvirus(SV40)weremicroinjectedintotheblastocoelofmouseembryos.Althoughtheresultingmicedidnotdeveloptumors,theycoulddetecttheviralDNAintegratedinthegenomeofcellsofmanydifferenttissues.Thesemiceareconsideredthefirsttransgenicmice(5).Laterinthe1980s,thefirsttransgenicmousecancermodelswereproduced,whichweregeneticallyengineeredtoexpressdominantoncogenes.Withtheseso-called“oncomice,”thepredispositionsrequiredforthedevelopmentofcancer,aswellasnewtargetsforthedevelopmentofnoveltherapeuticapproaches,couldbeinvestigated.Later,moredefinitivemodificationsinthegenomewereperformedwithknockoutandknock-inmice,andsincethenseveralresearchpapershaveusedthetermtransgenicmiceasadistinctgroupfromknockoutandknock-inmice(6).Duetotheconfusionrelatedtothenomenclature,in2007,theFederationofEuropeanLaboratoryAnimalScienceAssociationsreleasedguidelinesfortheproductionandnomenclatureoftransgenicrodents.Intheseguidelines,itisstatedthattransgenicanimalsarereferredtoasthosewithspontaneous,chemicallyinducedmutationsandthosewithrandomorgene-targetingDNArecombinationevents(7).TheNationalInstituteofHealth,NationalCancerInstitute(NIHNCI)referstothetermtransgenicanimalsformodelsinwhichDNAfromthemousegenomeorfromthegenomeofanotherspecieshasbeenincorporatedintoeachcellofthemousemodelgenome(8).Thesemicearenowmostlycalledtransgenicmice,buttheyarealsoreferredtoasgermlinegeneticallyengineeredmousemodels(GEMM),includingknock-inandknockoutmousemodels(9).Additionally,themousegenomeinformaticsdatabase(10),themaindatabaseresourceforthelaboratorymouse,listsmutantallelesforeachgeneinseveralcategories,including“transgenicmodels”similartothedefinitioninreference8aboveand“targeted,”whichencompassesbothtargetedknockoutandknock-inmodelssimilartothedefinitionofGEMMabove.Inthisarticle,werefertotheterm“transgenic”asageneraltermforalltypesofgenomealterationsinthegermorsomaticcellsand/orinvitroandinvivomousemodels. ProductionofTransgenicMice TransgenicmicecanbeproducedinseveralwaysbyintroducingDNAintothemousegenome(Figure1). 1.Byretroviralinfectionofmouseembryosatdifferentdevelopmentalstages.Thismethodisnotroutinelyusedfortheproductionoftransgenicmice(11),inpartduetothesilencingofthetransgeneofviraloriginfollowingdenovoDNAmethylationafterinsertionoftheretroviralvector(12).Anotherlimitationisalsoarelativelysmallsizeoftheinsertthatcanbecarriedbythevector,aswellasrandomintegration,whichcaninfluencetheexpressionoftheneighboringgenes,resultinginphenotypesthatareunrelatedtothetransgene. 2.BymicroinjectionofDNAconstructsorrecentlybymicroinjectingendonuclease-basedreagents(e.g.,Cas9–sgRNA–ssDNAmixture)directlyintothepronucleusoffertilizedmouseoocytes.First,inthecaseofinjectingDNAconstructs,thetransgeneisrandomlyintegratedinasmallpercentageofinjectedoocytesasoneormoretandemcopiesintothemousegenome,andgenerallyallthecellsofsuchoffspringpossessthetransgene(13–15).Themethodtoproducetransgenicprogenyisrelativelyquick,butitincludestheriskthattheDNAmayinsertintoacriticallocusthatcancauseanunexpected,detrimentalgeneticmutation.Second,thetransgenemayinsertintoalocusthatissubjectedtogenesilencing(16).Third,iftheDNAconstructinsertsasmultipletandemcopies,itcanproduceextremeoverexpressionleadingtonon-physiologicalphenotypiceffects,butmoreoftensuchtandemtransgeneintegrationsaresilencedinsubsequentgenerations.Inthecaseofusinganewendonucleaseapproach,reagentsarealsomicroinjectedintothefertilizedeggs,butherethegeneticmodificationisproducedatatargetedsitealbeitalsowithsomeoff-targetevents.Moreonthisnovel,CRISPR-Cas9-basedmethodisdescribedbelow. 3.Thethirdapproachiscalledthe“gene-targetedtransgeneapproach.”Itincludesthetargetedmanipulationofmouseembryonicstem(ES)cellsatselectedlocibyintroducingprimarilyloss-of-functionmutations(11).GeneticallymodifiedEScellsarethenmicroinjectedintothemouseblastocystsandtransferredtopseudopregnantrecipientmice.TheEScellsanddonorblastocystsderivefrommouselineswithdifferentcoatcolors,andthussuccessfulincorporationoftargetedEScellsintothedevelopingembryoofdonorblastocystresultsinchimericoffspringexhibitingvariegatedcoatcolor.Chimericoffspringarefurthermatedwithwild-typemicetotestforgermlinetransmissionofthetransgene.Ifchimericmiceshowingvariegatedcoatcolor(meaningtheyaresomaticchimeras)arealsogermlinechimeras,thenthecrosswithwild-typemicewillresultinacertainpercentofheterozygousprogenycarryingthetransgene.Finally,theintercrossofsuchheterozygotesproduceshomozygousmutantmiceatanexpected25%frequencyunlessthemutationisdetrimentaltoembryosurvivalanddevelopment(11,17,18).Variousexperimentsarethencarriedoutonmutanthomozygotestotestthefunctionalityofthegeneticmodification. FIGURE1 Figure1.Differentstrategiesforcreatingtransgenicmiceincludethe(A)retroviralapproach,whichisnotroutinelyused;(B)standardtransgeneapproach,inwhichtheDNAisinsertedintothegenomeinanunspecificmanner;and(C)gene-targetedtransgeneapproach,whichisanapproachthatisroutinelyusedtocreateconventionalknockouttransgenicmice,usuallywithaconstitutiveloss-of-functionmutation. TypesofTransgenicMice Theproductionoftransgenicmicedescribedaboveistime-consumingasitcantakeseveralyearstoestablishamutationintheEScellsanddevelopandvalidateanewtransgenicmousemodel.Nevertheless,traditionaltransgenicmicearewidelyusedinpreclinicalresearchinoncologyaswellasinotherresearchfields.Oneofthemaindrawbacksofusingtransgenicmiceinpreclinicalresearchisthelongtimerequiredtogeneratenewtransgenicmouselines.Forexample,theproductionoftransgenicmicebygenetargeting(Figure1C)requiresveryefficienttargetingofEScells,thegenerationofgermlinechimeras,atleasttwogenerationsofcrossestoobtainhomozygotes,colonyexpansionofhomozygousgene-targetedmiceandonlythencanthecharacterizationofoncologicalphenotypesbeperformed.Ifthegene-targetedmutationisdominant(i.e.,heterozygotesexpresstheoncologicalphenotype),theprocedureisonegenerationshorterbutstilllong.InallthemethodsdescribedinFigure1,theprocessofgeneratingandcharacterizingtransgenicmicetakesseveralyears,andinadditiontobeingtime-andlabor-consuming,italsorequiressubstantialfinancialsupport.Inaddition,oneoftheshortcomingoftraditionaltransgenicmousemodels(Figures1A,B)isthatasubstantialfractionofmicecanexhibitheterogeneityintheirphenotypes,includingdifferentialtissueorcelltypeexpressionorthegenerationofadditionalphenotypesthatarenotrelatedtothetransgeneduetothesiteinthegenome-integrationeffects,wherebythetransgeneaffectstheexpressionofneighboringgenesorepigeneticallyaltersalargerregionincis.Thisadditionalvariabilityinphenotypesresultsinanincreasednumberofmicethatarerequiredtogeneratethetransgenicmousemodelthatisstable(19).However,thisphenomenonisnotinlinewiththe3Rprinciples,especiallytheprinciples“reduce”and“refine”(20).Forallthesereasons,newwaysofgeneratingtransgenicmousemodelshaveemerged,notonlywithalternativewaysofmodifyingDNAthatwillbediscussedlaterbutalsowiththeuseofnon-germlinegeneticallyengineeredmousemodels(nGEMM)thatdonotcarryDNAmodificationsingermlinecellsbutonlyinsomesomaticcells.Inaddition,classicaltransgenicmousemodelscanbeimprovedbyinducibleorconditionaltransgenesistechniques. Roughly,transgenicmicecanbedividedintotwogroupsconsideringthelossorgainoffunction. LossofFunction Transgenicmice,inwhichthegeneisdepletedorsilencedtocausealossofgenefunction,arecalledknockoutmice.Thesemiceprovidevaluablecluesaboutthebiologicalfunctionofanormalgene.Intranslationalcancerresearch,thisrepresentsapowerfultoolinassessingthepotentialvalidityoftargetedtherapybecausethetargetscanbepreciselyinactivatedinthesettingofadevelopingordevelopedtumor.Inaddition,studiesusingknockoutmiceareimportanttoelucidatethecauseandeffectrelationshipincancerdevelopment.Suchstudieswithknockoutmicecanbeappliedfortheassessmentofmanygeneclasses,includingoncogenes,tumor-suppressorgenes,andmetabolic(“housekeeping”)genes(3).Theloss-of-functionmodelscanalsoincludedominant-negativetransgenicmousemodelsthatcarryspecificmutationsthatdisrupttheactivityofthewild-typegeneeitherbyoverexpressionorothertypesofmodificationsofgenestructure.Forexample,dominant-negativetransgenicmicehavebeenusedtoprobethefunctionofE-cadherinanditscausalroleinthetransitionfromadenomatocarcinoma(21). Twotypesofknockoutmousemodelsarefrequentlyused:constitutive(permanentlyinactivatedtargetgeneexpressionineverycelloftheorganism)andconditional(inducibleinactivationofgeneexpression),whichcanaffectaspecifictargettissue(tissueorcelltypespecific)orcanoccurinatime-controlledmanner(temporal)(22). ConstitutiveKnockout AconstitutiveknockoutmousegeneratedbyaproceduredescribedinFigure1Cisoftenreferredtoasaconventionalorwhole-bodyknockoutmodel.Itdefinesamousemodelinwhichthetargetgeneispermanentlyinactivatedinthewholeanimal,ineverycelloftheorganism(23).Thesemousemodelscanbeusedtoassessthechangesinamouse’sphenotype,suchasanatomy,physiology,behavior,andotherobservablecharacteristics.Incancerresearch,knockoutmousemodelshavebeeninvaluablefortheidentificationandvalidationofnovelcancergenes.Forexample,constitutiveknockoutmodelswereusedtoidentifytheroleofthenewlydiscoveredgenesushidomaincontaining6[Susd6,humansynonym;drug-activatedgeneoverexpressed(DRAGO)]asanewp53-responsivegeneinducedafterthetreatmentwithdrugsthatinterferewithDNA.TheresultsofthatstudyshowedthatdeletionofbothDragoallelesinp53−/−orp53+/−micecausedstatisticallysignificantlyacceleratedtumordevelopmentandashortenedlifespancomparedwiththatofp53−/−orp53+/−micethatborewild-typeDragoalleles(24).Nevertheless,theuseofconstitutiveknockoutsincancerresearchislimitedbecausetheydonotimitatethesporadicdevelopmentofatumorgrowingfromasinglecellinanotherwisenormalenvironment(clonalevolutionoftumors).Additionally,simpleknockoutsarefrequentlyintendedtoleadtoalossofproteinfunction(andlatelyinnon-codingRNAgenes),whereasincancer,asubsetofcancer-causingmutationsconsistentlyalsoresultsinagainoffunction(25).Furthermore,oneofthemajordrawbacksofconstitutiveknockoutsisthatgermlinelossoffunctionoftenleadstoembryoniclethality,severedevelopmentalabnormalitiesoradultsterility,makingconclusivedeterminationsabouttumor-suppressorgenesmoredifficult(26). ConditionalKnockout Duetothelimitationsoftheconstitutiveknockoutmodel,modificationoftheknockoutmodelemergedtoleadthedevelopmentofconditionalknockoutmodels.Theconditionalknockoutmodelcanmoreefficientlymimicspontaneouscarcinogenesisbecauseinhumans,tumorsevolveinawild-typeenvironment,andtherefore,thetimingofgenelossmaybeacriticalfactorindiseasedevelopment(3).Thus,toavoidand/orimprovethelimitationsoftheconstitutiveknockout,conditionalmodels,inwhichthegeneknockoutcanbespatiallyandtemporallyregulated,weredeveloped.ThemainactorsinthistechnologyarebacterialCreandyeastFLPenzymes,whichactassite-specificrecombinasestocatalyzerecombinationbetweenspecific34-bploxPandFRTsites,respectively.WhenCreorFLPproteinsareexpressed,homologousrecombinationisinducedbetweenloxPorFRTsites.Thesesitesflankthegeneofinterestandareorientedinthesamedirection,whichcausesthedeletionofthegeneofinterestafterrecombinationofflanksofgeneticsequence.Expressionoftherecombinasecanbecontrolledtemporallyorspatially,andtherefore,wecancontrolthedeletionofthegeneofinterestintemporalandspatialmanners,thusovercominginterferencesduetodevelopmentalabnormalitiesandlethality(27). Forspatialcontrol,micecarryingtheCreorFLPrecombinaseunderthecontrolofatissue-specificorinduciblepromotormustfirstbedeveloped,usuallyviathemethoddescribedinFigure1B.Whenthesemicearecrossedwithgene-targetedmicecarryingthegeneofinterestflankedbyloxPorFRTsites(developedviatheprocedureinFigure1C),thetargetgeneintheprogenycanbeconditionallyinactivatedinaspecifictissueorcelltypeoratspecifictimesduringdevelopment(3).Tissue-specificknockoutmodelscanalsobeproducedbyviraldriveninduciblevectorsdeliveredlocallyortopicallybyinjectiontoinfectthecells,therebydeliveringCreorFLPenzymestotargettissuesorcells.Thismethodcreatesregionalknockoutofcellswithintheappliedarea(28).Bothadenovirusandlentivirusvectorscanbeused(29). ForthetemporalcontrolofCreexpression,tetracyclineandtamoxifen-induciblesystemsaremainlyused(30).Inthecaseoftetracycline-basedsystem,atransactivatorandaneffectorareused.Thetetracycline-controlledtransactivator(tTA)proteinbindstothetetracyclineoperator(tetO)thatcontrolstheactivityofCreexpressiontogenerateconditionalknockouts.Whenaddingtetracyclinetotheanimal’sdrinkingwater,theingesteddrugbindstotTAandinhibitstheassociationwithtetO,blockinggenetranscription(31).ThisiscalledaTet-offsystem,whereingeneexpressionisinhibitedinthepresenceoftetracycline.WhenusingtheTet-onsystem,reversetetracycline-controlledtransactivator(rtTA)proteinbindstotetOonlyifitisboundtotetracycline.Therefore,thepresenceoftetracyclineintheanimalinitiatesgeneexpression(32).OneoftheshortcomingofthissystemistheleakinessofrtTA,whichcompromisesthedesiredregulationoftransgeneexpression.ThertTAmaintainssomeaffinityfortetOsequencesevenintheabsenceoftetracycline,whichresultsintheundesiredtranscriptionoftargetgenes(33). Inthetamoxifen-induciblesystem,theCrerecombinasegeneisfusedtoamutatedligand-bindingdomainofthehumanestrogenreceptor(Cre-ER(T))thatisspecificallyactivatedbytamoxifen.Whenactivetamoxifenmetabolite4-hydroxytamoxifenisabsent,theERfusionproteinisexcludedfromthenucleus.Afterbindingtotamoxifen,theERfusionproteinisagaintransportedtothenucleus,enablingthebindingofCrerecombinasetoDNA.Therefore,temporalexpressionofCrecanbecontrolledbydeliveringorwithholdingtamoxifentotheanimals(34).Conditionalknockoutmousemodelhavebeenusedinmanydifferentstudies,includingthosemanipulatinggenes,suchasK-Ras,Myc,andp53(25),aswellasinstudiesevaluatingtumor-initiatingcells.Forexample,thedevelopmentofabnormaldifferentiatedSchwanncells,whichserveasneurofibromatumor-initiatingtumorcells,hasbeenshowntoresultfromtheconditionallossofNf1infetalneuralcreststem/progenitorcellsoftheSchwanncelllineage(35).Onelimitationofthetamoxifen-induciblesystemistheleakinessoftheCre-ERmodels,whichcausesacertainlevelofnucleartranslocationofCre-ERevenintheabsenceoftamoxifen(36).Suchaneventcancauseanundesiredgainorlossoffunctionalmutations(37). Likeanystrategy,theproductionofconditionalknockoutmodelsalsohasdrawbacksandlimitations:theprocedureusedtodevelopthesemodelsislengthyandrequiresadditionaltransgenicCreorFLPtransgenicmodels,withthepossibilityofmosaicexpressionofCreorFLP-driventransgenesasmanyCrelinesarepronetobothtemporalandspatialectopicexpression,geneticbackgroundeffects,oreveneventualsilencingoftheexpressionofCreorFLP-driventransgenesinmiceinlatergenerations(38).However,comparedwiththeconstitutiveknockout,conditionalknockoutmutagenesisisadvantageousbecauseitusessubtlergeneticmodificationstoexaminethefunctionalrole(s)ofgene(s)inatissueortemporalmanner.Italsoavoidspotentialembryoniclethalityfromtheconstitutiveknockoutapproach,makingitpossibletostudyessentialgenes. GainofFunction Gain-of-functionstudiesareoftenusedtostudyoncogenesinmousemodels.Knock-inmodelsofoncogeneoverexpressioncanbeusedtostudyhowtheoncogenedrivescarcinogenesisinvivo. ConstitutiveRandomInsertionModel Theconventionalrandominsertionmousemodelcanbeproducedbyviralvector-basedtransfectionofearlymouseembryosorbypronuclearinjectionofthetransgenedirectlyintofertilizedoocytes(Figures1A,B).Thetransgeneisthenrandomlyincorporatedintothegenome.Althoughtheprocedureisverystraightforwardandrelativelysimple,therandomincorporationintothegenomeisthemaindrawbackofthismodelbecauseitcanresultinanundesirableexpressionlevelorspatiotemporaldistributionoftransgeneactivity,orevendeleteriouseffects,thuslimitingtheusefulnessofthemodel.ThesemodelshavebeenwidelyusedtostudyhowoncogenessuchasK-rasdrivetumorigenesisinvivo(39–42). Knock-inPermissiveLocusModel Toovercomethelimitationsoftheconstitutiverandominsertionmodel,severalnewmodelshavebeendevelopedtostudythegainoffunction,specificallybyinsertingageneofinterestintoaspecificregionofthegenome.Usinghomologousrecombination,amorepredictableandstablegain-of-functionmodelcanbeobtained.ThemostcommonlyusedsiteistheRosa26locusbecauseitdoesnotcontainanyessentialgenesandprovidesstableandpredictableexpressionofthetransgeneinvariouscelltypes(43,44).Npm1transgenicmicecanserveasagoodexampleofamousemodelusingtheRosa26locusandCre-regulatedexpression.TheNpm1mutation,whichisthemostfrequentgeneticalterationinacutemyeloidleukemia(AML)(45),canbecharacterizedinthisknock-inpermissivemodel.Withthismodel,ithasbeenshownthatNpm1mutationsaffectsmegakaryocyticdevelopmentandmimicssomefeaturesofhumanNPM1-mutatedAML,thusservingasagoodmodelforfurtherinvestigationsofAML(46). ConditionalKnock-InModel Aspreviouslypointedout,theconstitutivegeneknock-indescribedinSection“ConstitutiveRandomInsertionModel”canleadtolethality,sterility,anddevelopmentaldefects.Therefore,similartotheknockoutmousemodels,spatialandtemporalcontrolofthegenehastoberegulatedtoalsocircumventtheselimitationsinknock-inmodels.Conditionalknock-inmodelscanbegeneratedusingtissue-specificpromotorsorbyinsertingastrongtranslationalandtranscriptionaltermination(STOP)sequenceflankedbyloxPorFRTsitesbetweenthepromotorsequenceandthegeneofinterest(47).WhentheSTOPsequenceispresent,transcriptionofthegeneinterestisblocked.However,whenCreorFLPrecombinaseareexpressedandpresent,theSTOPcassetteisremoved,allowingexpressionofthegene(28).Thus,geneexpressionismediatedbyexcisionoftheSTOPcassetteandrecombinaseexpression.Therefore,geneexpressionisspatially,temporally,andinduciblymediatedbyCreorFLPsystems(48).Occasionally,alsodependingontheknock-ingenomesite,theSTOPcassettescanbeleaky,asobservedintheinitialK-rasG12Dmodelsoflungcarcinoma,whereindeathduetorespiratoryfailurepriortotumorprogressionoccurred(49).ImprovedSTOPcassetteswithlessleakinessweresubsequentlydeveloped.Laterversionsofconditionalknock-inmousemodelofLSL-K-rasG12Dwereshowntobegoodmodelstostudytheinitiationandearlystagepulmonaryadenocarcinoma,allowingcontrolofthetiming,location,andnumberoftumors(28).Additionally,conditionalknock-inmousemodelswerealsousedtoinvestigatetheroleofBrca1RINGfunctionintumorsuppressionandtherapeuticresponse,whereitwasdeterminedthatBrca1RINGdidnotaffectresistancetotherapy(50). ReporterKnock-InModel Toobservetheexpressionofthetargetedgeneatthetranscriptionalortranslationallevel,reporterknock-inmousemodelscanbeused.Genesencodingfluorescenceproteinshavebeenwidelyusedasreportersinbiomedicalresearchandfrequentlyemployedtoanalyzethetransgeneactivity.Inreportermodels,transgenesareusedforthevisualizationofproteomic,metabolic,cellular,orgeneticeventsinvivo.Themostcommonlyusedtechniqueforvisualizationisfluorescentandbioluminescentopticalimagingduetotheincreasedsensitivity,relativeinexpensiveness,andlesstime-consumingandmoreuser-friendlyfeaturescomparedwiththoseof,forexample,histological,genetic,orbiochemicalmethods.Furthermore,suchmodelsarealsoinlinewiththe3Rprinciplesinresearchusinganimals,incorporatingatleasttwooftheseprinciples;reduction(lessanimalsused)andrefinement(lessharmfulmethods)(20).Severaltransgenicmouselinesareavailablethatexpressreportergenes(51).Themostcommonreportersaregreenfluorescentprotein(GFP)andredfluorescentprotein(RFP)(52,53)forfluorescenceandfireflyluciferaseforbioluminescence(54).Thelattercanalsobeusedforthevisualizationoftumorgrowthinvivo.Tostudytumorcellproliferationinvivo,miceexpressingfireflyluciferaseundercontrolofthehumanE2F1genepromotor,whichisactiveduringproliferation,werecrossedwithamousecancermodel(55). Recently,incancerresearch,detectionandimagingoftheimmuneresponsehasbecomeoneofthefundamentalwaystofollowthetreatmentcourseinliveanimals.Becauseseveralnewtreatmentsaimtomodulatetheimmuneresponse,therecruitmentofimmunecellstotumorsisanimportantindicatoroftheeffectivenessofanticancerimmunetherapies.Thisrecruitmentcanalsobeusedtoobservetumor-inducedimmunesuppression.Theinteractionsbetweencellsoftheimmunesystemandtumortargetsinthecontextofthetumormicroenvironmentcanbefollowedbyintravitalmicroscopy(56).OneoftheimmunecellsthatiscloselyconnectedtoprogressionofthevarioustypesofcancersistheregulatoryTcell,theactionofwhichisbasedontheimmunosuppressivefunctionoftheimmuneresponse(57).Forexample,Bauerandcolleaguesusedtwo-photonmicroscopytoinvestigatethepro-tumorroleoftumor-experiencedregulatoryTcellinteractionswithdendriticcells.TransgenicmiceexpressingenhancedGFP(eGFP)inallTcellsandmCherryinantigen-presentingcellswereused.TheirstudyshowedthatregulatoryTcellinteractionswithdendriticcellsintumor-draininglymphnodescausedthedeathofdendriticcells(58).Intravitalmicroscopyisavaluabletoolalsoforassessingthedynamicchangesinthetumorvasculatureandfollowingthetranscriptionaltargetingofgeneexpressioninvarioustissues(59,60). NewMouseModelsforCancerResearch Newmousemodelshaveemergedforresearchinpreclinicaloncology,especiallywithinthelastdecadewiththegreatadvancementsinmolecularbiologyaswellasgenomictechnologyandengineering.OnenoveltywastheproductionofnGEMM,whichshowedgreatpromiseinproducingtransgenicmiceatalowcostwithlesstime-consumingprocedures.OthernoveltiesarealternativeDNAmodificationtechniques,whicharemoreefficientforthefasterandcheapergenerationofnewtransgenicmice.AllthedifferentalternativemodificationsofDNAcanbeusedtoproducenewtypesoftransgenicmiceorfurthermodifyconventionalmodels,asdescribedinFigure1.Furthermore,apartfromtransgenicmice,newmodelsusedincancerresearchhaveemerged,suchashumanizedmice,whichhavere-establishedbordersintumormicroenvironmentstudies.Humanizedmiceimplementedwithpatient-derivedxenografts(PDX)canelucidatetheinteractionbetweenthehumantumorandhumanimmunesystemaspartofthetumormicroenvironmentinamousemodel. Non-GermlineGeneticallyEngineeredMouseModels Non-germlinegeneticallyengineeredmousemodelsarecharacterizedasmousemodelscarryinggeneticallyengineeredallelesinsomaticcellsbutnotingermlinecells(22,61).Acomprehensivereviewoftheiradvantagesandlimitationsisprovidedelsewhere(19),andonlyabriefsummaryisgivenherein.ThenGEMMareproducedbytwomajorapproaches:bygeneratingchimericortransplantationmodels.Non-germlinechimericmicecanbeaby-productoftraditionalknockouttechnology(Figure1C),presentingchimericmicethatdonotcarrymodifiedEScellsinthegermlinelineage(62).ChimericmousemodelsforcancerresearchcanalsobeproducedonlyforthepurposeofgeneratingnGEMMsbyinjectinggeneticallyengineered,cancerpredisposed,EScellsintoblastocystsfromachosengeneticbackgroundtodevelopcancer-pronechimericmiceinsomatictissues(63).Asrecipientblastocystsusuallyhaveawild-typegeneticbackground,andnoteverycellinthebodyishencegeneticallymodified,thissituationbettermodelscarcinogenesisinhumans.LargebanksofgeneticallymodifiedmouseEScellsinalargeproportionofgeneshavealreadybeenestablishedingenome-widemutagenesisprogramssuchasEuropeanConditionalKnockoutMouseMutagenesis,NorthAmericanConditionalKnockoutMouseMutagenesis,theUSA-NIHKnockoutMouseProject,andtheEuropeanMouseDiseaseClinicprojects,andtheyarealsocommerciallyavailable(e.g.,https://www.jax.org).Hence,EScellsobtainedfromtheseresourcecenterscanbeimmediatelyusedtogeneratetailorednGEMMs.Ascarcinogenesisisspatiallyandtemporallyrestricted,tissuesordevelopmentaltimespecificitycanbeaccomplishedbyapplyinginductionreagentslocallyorinatime-restrictedmanner.OnelimitationofchimericnGEMMsistheincreasedvariabilityrelatedtotumorigenesisbetweenindividualchimericmiceandthatEScellscanpopulatedifferentcelllineagesandhencedifferenttargetorgans,whichcanproduceheterogeneitybetweenindividualmice(49,64).Additionally,someofthetargetcelllineagescannotbeefficientlyorcannotatallbepopulatedbyEScells. Intransplantationmodels,thetransplantedtissuecanderiveeitherfromgeneticallyengineereddonormicethatcanhaveapredisposingcancermutationorfrommouseorhumancellsthathavebeenpreviouslyengineeredexvivo(mouse-to-mouse;human-to-mousemodelsofnGEMM)(19).Transplantationsystemshavefirstandmostlycommonlybeenadaptedtostudyhematopoieticcarcinogenesis.Here,hematopoieticstemandprogenitorcellsarederivedfrombonemarroworfetalliverandtransplantedbysimpleintravenousinjectionintolethallyirradiatedrecipientmice(65).Irradiationmodelsofhigh-dosechemotherapyinhumansalsocreateawindowforsuccessfulengraftmentoftransplantedmodifiedhematopoieticstemandprogenitorcellsintonGEMMs(66,67).Takentogether,nGEMMsareverypotentfortheiruseincancerresearch,withgreatvalueintestingnewtherapeutics.OneofthegreatestadvantagescomparedtotraditionalGEMMisthefastergenerationofnewtransgenicmiceandimprovementsinmodelingthetumormicroenvironment,whichismoresimilartothesituationinhumancarcinogenesis. AlternativeDNAModificationTechniques Fine-tunemodelingofmousecancermodelscanbeperformedusingseveralalternativemethodsthathavebeendevelopedforfasterandmorereliabletestingofgenesfortheironcogenicpotential.Themostcommonlyusedmethodsaretransposon-basedinsertionalmutagenesis,RNAinterference(RNAi),andengineerednucleases(68). Transposon-BasedInsertionalMutagenesis TransposonsareDNAsequenceswiththeabilitytomovefromonelocationofthegenometoanother.Twogroupsoftransposonsareknown:retrotransposonsandDNAtransposons.Retrotransposons,becauseoftheirlowintegrationefficiency,theintegrationofincompleteretrotranscribedelements,andtheconcomitantinductionofchromosomalaberrations,arerarelyusedfortheproductionoftransgenicmice(69).Incontrast,DNAtransposonshaveshowngreatpromiseintransposon-mediatedinsertionalmutagenesis.Mutagenesisreliesonatransposaseenzyme,whichdistinguishesspecificDNAsequencesand“cuts”theDNAbetweenthem.TheexcisedDNAisthenreintegratedatanothersiteinthegenome(70)(Figure2).Transposon-basedinsertionalmutagenesiscanhencebeusedingeneticscreenstoidentifynovelcancer-causinggenes,suchasoncogenesortumor-suppressorgenes(71).Thetwomosteffectivetransposonsaredescribed:SleepingBeautyandPiggyBac. FIGURE2 Figure2.Mechanismoftransposon-basedinsertionalmutagenesis.Thetransposonsystemiscomposedofatransposon(targetedsequenceofDNA)andanenzyme(transposase).Thetransposasebindstotheappropriatesitealongthetransposonandexcisesthetransposon.ItthenpastesthetransposonatanappropriatelocationinanotherDNAsequence,TAsiteinthecaseofSleepingBeauty,andaTTAAsiteinthecaseofPiggyBac. SleepingBeauty TheimportantelementsofSleepingBeautyarethetransposase,whichisanenzymeusedforthemobilizationofDNA,andthetransposon,whichisamobilizedsequenceofDNA(72).ThemechanismofSleepingBeautyreliesonacut-and-pastemode,andwhenthetransposaseexcisesatransposon,itleavesbehindathree-basefootprint.Then,thetransposoncanmobilizetoanylocationinthegenomewhereaTAdinucleotideispresent.Therearemorethan300millionTAsitesinthegenome.TheTAinsertionsiteisduplicatedduringtheprocessoftransposonintegration(70,73).Thetransposoncancarryanysequenceofchoice,butthetranspositionefficiencydecreaseswithanincreasedsizeofthesequence(70).Thesesequencescanbemutagenicelements,whichcanbeintendedtoimitatethosepresentinretroviruses.TheSleepingBeautytransposonscanbeusedfortheinductionofloss-of-functionmutationsaswellasgain-of-functionmutations(74).Duetothecut-and-pastemode,thereisonlya40–50%possibilitythatreintegrationoftheexcisedtransposonwilloccurintothegenome.Additionally,becausethenumberoftransposonsintegratedinthegenomedecreasesovertime,alargenumberoftransposableelementsarerequired(75).SleepingBeautycanbeusedforthediscoveryofcandidatecancergenesandtosearchforthedriversofmultiplecancertypes.Becauseofthesescreens,severalcancer-promotingmutationscandidatehavealreadybeenfound,whichcanbeusedinthedevelopmentofnewmousemodelsthatmayproveusefulfortherapeutictesting.Toidentifycandidatedriversofcolorectalcarcinoma,transposon-basedscreensareusefulbecausecancer-promotingmutationsarecausedbytransposoninsertioneventsratherthangenome-wideinstability.ColorectalcarcinomahasbeenmodeledusingmicecarryingthemutagenicT2/Onc2SBtransposons,conditionalRosa26-lsl-SB11transposase,andvillin-Cretoactivatetranspositionspecificallyingastrointestinaltractepithelialcells.Usingthistechnique,intraepithelialtumors,adenomas,andadenocarcinomasinthesmallandlargeintestinesweregenerated.Moreover,analysesofthetransposoninsertionsiteofthesetumorsidentified77candidatecolorectalcarcinomagenes,60ofwhichareknowntobealteredordysregulatedinhumancolorectalcarcinoma(76).Furthermore,SleepingBeautycanalsobeusedtoinducecancerinatissueofinterestbycombiningitwiththeCrerecombinaseinduciblesystem.ByemployingCreexpressionunderthecontrolofanalbuminenhancerorpromotorsequence,whichisspecificforliver,SleepingBeautytranspositionwaslimitedtotheliver.Thissystemwasusedtoscreenforhepatocellularcarcinomaassociatedgenes.Newgenespotentiallyinvolvedincarcinogenesis,suchasUBE2H,werediscovered,andtherefore,thismodifiedsystemwasintroducedinthesearchfornewpossiblecandidategenes(77). PiggyBac PiggyBactransposonsaretheonlyefficientalternativetoSleepingBeautyforcancergenediscovery.ComparedwithSleepingBeauty,PiggyBaccancarrylargercargos(uptoseveralhundredkilobases).Thesecargosareinsertedwithhighertranspositionactivityintomammaliangenomes.Additionally,thePiggyBacsystemrequiresaTTAAinsertionsiteinsteadofTA,andafterthetransposaseexcisesatransposon,itdoesnotleaveanyfootprint,incontrasttoSleepingBeauty.ThisimpreciseexcisionofPiggyBaccanleadtodamageatthemobilizationsite,therebycreatinglossorgain-of-functionalleles(70,78).ThePiggyBactransposonscanalsobeusedtogeneratetransgenicrodentsexpressingareporterfluorescentproteinindifferentorgans.Recently,transgenicratscarryingeithertheRFPgeneortheeGFPgeneweregeneratedbyinjectingpronucleiwithPiggyBacplasmids.NotonlydidthetransgenicratsexpresstheRFPandeGFPgeneinmanyorgans,buttheyalsohadthecapabilitytotransmitthereportergenetothenextgenerationthroughintegrationintothegermlinelineage(79). RNAInterference RNAinterferenceinmicerepresentsanalternativetoknockoutmice,or,moreaccurately,aknockdownmouse.Namely,knockdownbyRNAidoesnotgenerateacompletelyloss-of-functionallele(80).Silencing,orbetter,downregulatinggeneexpressionofatargetgenebysmallinterferingRNA(siRNA)hasbeenmainlyusedtostudygenefunction(81).Itwasusedforsilencingestrogenreceptoralpha(ESR1),wherestableknockdownsuppressedtheproliferationandenhancedapoptosisofbreastcancercells(82),orforsilencingtransketolase(TKT),whichaffectscellproliferationandmigrationaswellasinteractionswithothermetabolism-associatedgenesinlungcancercells(83).However,theknockdowneffectofsiRNAisonlytransientduetotheshorthalf-lifeofsiRNAmolecules.Toachieveamoresustainedgene-silencingeffect,plasmidsencodingshorthairpinRNAs(shRNA)canbeused.RNAibyshRNAspermitsreversiblesilencingofgeneexpressionwithoutalteringthegenome.ToincreasetheexpressionoftheshRNA,thetargetingvectorofinterestcanbeinsertedintotheRosa26locusbytherecombinationofasite-specificrecombinaseinEScells(developedusingatechniquedescribedinFigure1B). EngineeredNucleases Thusfar,threekindsofengineerednucleaseshavebeendevelopedandtestedforDNAmodulation:zinc-fingernuclease(ZNF),transcriptionactivator-likeeffector(TALEN)nuclease,andthelatestclusteredregularlyinterspacedshortpalindromicrepeat(CRISPR)/-associated(Cas9)system(84). Briefly,ZNFsandTALENsareproducedbycombiningaDNA-bindingdomainwithaDNA-cleavagedomain.Thesedomainscanbeengineeredtoactasasite-specificnuclease,cuttingDNAatstrictlydefinedsites,whichenableszinc-fingerorTALENnucleasestotargetuniquesequenceswithincomplexgenomes.ThetargetingefficiencyoftheZNFsystemreaches68%(85),andZNF-mediatedgene-targetingexperimentsarearelativelyefficientmeansforgeneratingnon-homologousend-joining(NHEJ)-mediatedknockoutmice(86).UsingtheTALENmethodtoproduceknockoutmiceisefficientin49–77%ofcases(87),whichcanbeincreasedwithagreaterconcentrationofTALENmRNA.Thismethodhasbeenprimarilyusedtoincreasetheefficiencyofgenetargeting,andcomparedtoZNFs,TALENsyieldhighermutationefficienciesandsurvivalrates. However,theuseofZNFsandTALENsislimitedbecauseconstructionoftheproteindomainsforeachparticulargenomelocusiscomplexandexpensive.Additionally,singlenucleotidesubstitutionsorinappropriateinteractionbetweendomainscancauseinaccuratecleavageofthetargetDNA(84).Furthermore,thetargetingefficiencymaybevariableandmuchlowerthanreportedabove.However,amajordrawbackisthatsimultaneousgenetargetinginmultiplegenesishindered,preventingstudiesofoncologicalphenotypeswhereinmultiplemutationsarerequired,inanalysesofgenefamilymemberswithredundantfunctionsorincasesofcancersinwhichgene–geneinteractionsexist. CRISPR/Cas9System ThesimplestandthemosteffectiveengineerednucleasesystemtogeneratetransgenicmiceistheCRISPR/Cas9system(88).ComparedwithZFNsandTALENs,theCRISPR/Cas9-mediatedgenomeeditingismoreefficient,andthedesign,constructionofreagents,aswellasdeliveryareeasier.Additionally,targetedmutationsinmultiplegenes(so-calledmultiplexgenomeengineering)arepossiblewiththeCRISPR/Cas9system.ThissystemconsistsofaCas9nuclease,whichcanbedirectedtoanygenomiclocusbyanappropriatesingleguideRNA(sgRNA).Untilnow,threemaintypesofCas9variantshavebeendevelopedthatdifferintheirmechanismsofaction.Thefirstsystemtobeadaptedformousetransgenesiswasthewild-typeCas9proteinfromthetypeIICRISPRsystemofStreptococcuspyogenes,whichfunctionsviaanassociationwiththesgRNAwitharelativelyshortrecognitionsequence(~20nt)(89).Fordouble-strandcleavage,thissystemrequirestheprotospacer-adjacentmotif(PAM),whichis“NGG”or“NAG”forS.pyogenesCas9atthe3′endofthetargetsequence.Recently,newformsofCas9enzymeshavealsobeendevelopedthatcanbindtoalternativePAMsitesandtherebyextendtherangeofutilityofCas9(90).Oncethedouble-strandedbreaksoccur,itcanberepairedbyNHEJorbyhomology-directedrepair(HDR)(91)(Figure3).NHEJ-mediatedrepairfrequentlyresultsinshortinsertionsordeletionsthatgenerateloss-of-functionmutations. FIGURE3 Figure3.MechanismofCRISPR/Cas9genemodulation.AsingleguideRNAdirectsCas9nucleasetoagenomiclocus,whereitcutsthetargetsequenceinthepresenceofprotospacer-adjacentmotif.Theresultingdouble-strandedbreaksstimulatesDNArepair,whichcanoccurvianon-homologousend-joiningorhomology-directedrepair-mediatedrepair. ThesecondCas9variantwasdeveloped(92)toincreasetheefficiencyofHDR,allowinginsertionsorreplacementsofspecificnucleotides.AmutantformCas9protein(Cas9D10A,callednickase)wasdevelopedthatcleavesonlyoneDNAstrand,downregulatingtheactivationofNHEJ.WhenahomologousrepairDNAtemplatewithaspecificmutationorsequencetobeintroducedisprovidedinthemixtureofthesgRNAandCas9D10Amutation,itcanserveasatemplatetorepairthelesion.Thisactivatesthehigh-fidelityHDRpathwayandhenceoffersthepossibilitytogenerateallelereplacementsandotherspecificmodificationsinthemousegenomethatwereessentiallyimpossiblewiththeclassictransgenesismethodsdescribedinFigure1. ThethirdCas9variantistheso-called“dead”Cas9ornuclease-deficientCas9(dCas9)(93),inwhichcertainmutationswereintroducedtoinactivatethecleavageactivitybutretaintheDNA-bindingactivity.ThisvariantwasdevelopedtobeabletotargetanyregionofthegenomewithoutcleavageandbyfusingdCas9withvariousactivatororrepressordomains,toup-ordownregulatethetranscriptionoftargetgenes.AnadditionalapplicationofthedCas9systemwasdevelopedbyChenandHuang(94).ByfusingdCas9toeGFP,theydevelopedavisualizationtoolanddemonstratedthattheycouldvisualizeseveraldynamicprocesses,suchastelomeredynamicsduringelongationordisruption,subnuclearlocalizationofcertainloci,anddynamicbehaviorduringmitosisinlivinghumancells. ApplicationoftheCRISPR/Cas9SysteminOncology SeveralsuccessfulapplicationsoftheCRISPR/Cas9systemincancerresearchhavebeenpublishedbyusingoneoftheaforementionedthreesystemsorbycombiningtheclassictransgenicmodelsdescribedinFigure1withCRISPR/Cas9togenerategermlineornGEMMmousecancermodels(88).SomeearlysuccessfulattemptstodevelopnewinvivocancermodelsincludeanewpancreaticcancermodelcombiningviralvectordeliveryandCRISPR/Cas9-mediatedsomaticgenomeediting(95),andalungcancerknock-inmodel(96).ThelatterwasdevelopedbycombiningaCre-dependentCas9mousemodelwithsgRNAdelivery,whichgeneratedloss-of-functionmutationsinp53andLkb1,aswellasnucleotidereplacementleadingtoanoncogenicK-rasG12Dmutationthatcauseslungadenocarcinoma.Aconditionalliver-specificmutationincancergeneswasdevelopedbyXueetal.(97),whereasthedevelopmentofnovelbraintumormousemodelswasreportedbyZuckermannetal.(98).AnimportantstepforwardinnewmodelsincancerresearchwasdemonstratedbyMaddaloetal.(99),whousedCRISPR/Cas9-mediatedinvivosomaticgenomeeditingtoengineerchromosomalrearrangements.Thisclassofmutationsplaysanimportantroleincarcinogenesis,butitisverydifficult,ifnotimpossible,todevelopusingclassicaltransgenesisapproaches(Figure1).Authorshaveusedviral-mediateddeliveryoftheEml4–AlkfusiongenebytheCRISPR/Cas9systemtosomaticcellsofadultanimals,whichmodelsaninversiononchromosome2:inv(2)(p21p23)thatoccursinhumans.ExpressionoftheEml4–AlkfusiongeneinthismodelresultsinpathologicalandmolecularcharacteristicsoftypicalALK+humannon-smallcelllungcancers(NSCLC).Moreover,thismousemodelrespondspositivelytoALKinhibitors.Similarly,usingasomaticCRISPR/Cas9approach,Cooketal.(100)demonstratedinanexvivoandinvivostudythatachromosomalrearrangementresultinginBcan–Ntrk1fusioncreatesapotentdriverforglioblastomadevelopment. TheadaptabilityoftheCRISPR/Cas9systemtothescientificquestionandarelativelyeasywaytoscaleuptheexperimentaldesignhasalreadyledtohigh-throughputinvivoscreenstocatalogfunctionaltumorsuppressors.OnesuchcomprehensivestudybyWangetal.(101)mappedfunctionalcancergenomevariantsoftumorsuppressorsinthemouseliverofthewild-type,immunocompetentstrain.ByinjectingAAVpoolscontainingalarge(278)sgRNAlibrarydirectedtowardknownandthemostfrequentlymutatedtumor-suppressorgenesintoRosa-Cas9-eGFPknock-inmice,theywereabletogenerateamutationalatlasoflivertumors.AllthemicethatreceivedthisAAV-sgRNAoftumor-suppressorsgRNAdevelopedlivercanceranddiedwithin4months,demonstratingthevalidityandextremelyhighefficiencyofthisscreeningapproach.Therefore,AAV-mediatedCRISPR-Cas9screensprovideapowerfulhigh-throughputtoolformappingfunctionalcancertumorsuppressorsinvarioustissuesinfullyimmunocompetentmice. Studiesusingwild-typeCas9ornickasemutationCas9varianthavethusfarbeenmostfrequentlyusedinmousecancermodeldevelopment.However,applicationofthedCas9systeminwhichnogenomemodificationsareproducedbutaneffectontheexpressionoftargetgenesisobservedhavealsostartedtoemergeininvivomodelsofcancer.AgoodexampleofthistypeofresearchhasbeendescribedinBraunetal.(102),whoaimedtoexaminetheeffectoftheupregulationofMgmtusingdCas9proteinfusedtoafourfoldrepeatoftheVP16transcriptionalactivator(VP64)incombinationwithsgRNAstargetingupstreamregulatoryregions(103).ThistargetgenewaschosenbecauseitisknowntodetoxifyDNAlesionscausedbythechemotherapeuticagenttemozolomide.MurineacuteB-celllymphoblasticleukemiacellswerefirstinfectedwithacombinationofdCas9-VP64andsgRNAsandtransplantedintowild-typefullyimmunocompetentC57BL6/Jmice.Positiveresultswereobtained,asupregulationofMgmtwasachieved,andthemicerespondedtotemozolomide.ThesefindingsdemonstratedthatthedCas9-basedsystemcouldbesuccessfullyusedtoaffectgeneexpressiononlyandtomodeloncologicalgeneticmodificationsduringtreatmentrelapseinvivo. Furthermore,thesimultaneousinjectionofCas9mRNAandsgRNAintothecytoplasmofzygoteshasbeenshowntoefficientlyandreliablygenerateknockoutmicewiththehighesttargetingefficiency(67–100%)ofallengineerednucleases(84).Beyondthedevelopmentofnoveltransgenicmice,CRISPR/Cas9canalsobeusedtorefineexistingmodelsofcancerbyreengineeringEScelllinesfromwell-knowntransgenicmicetoharboradditionalconstitutiveorconditionalmutantallelesofoncogenesandtumor-suppressorgenes(104).Therefore,CRISPR/Cas9representsanefficientmethodforgeneratingtransgenicmiceduetoitssimplicity,cost-effectiveness,highefficiency,andlowfetaltoxicityevenatrelativelyhighdosesofCas9mRNAandsgRNA(105). HumanizedMouseXenograftModels Patient-derivedxenograft(PDX)modelshavebeenextensivelyusedinstudiesofvarioussolidandhematologicmalignancies,suchasbreastcancer,colorectalcancer,pancreaticcancer,chroniclymphocyticleukemia,andlargeBcelllymphoma(106,107).PDXmodelsareusedfortheassessmentofhumantumorbiology,identificationoftherapeutictargets,andareanimportantmodelforpreclinicaltestingofnewdrugsforvariouscancers.PDXmodelsareestablishedbytheimplantationofcancercellsortissuesfrompatientprimarytumorsintoimmunodeficientmice.Severaltypesofstandardimmunodeficientmiceexist,suchasathymicnude,SCID,NOD-SCIDandrecombination-activatinggene2(Rag2)knockoutmice(108).However,thesemousemodelsareusuallyusedtoestablishaxenograftcancercelllineortogrowtransplantabletumorxenografts,andtheyareunabletogrowprimarycancercellsortissues.Toaccomplishthisgoal,greaterimmunodeficiencyisrequired,whichisprovidedbythegenerationofNOD/SCIDmicewithIL2rgmutations(NSG)thatareabletoengraftalmostalltypesofcancerduetotheirenhancedimmunodeficiency(109).Toimplantpatient-derivedtumorsintoimmunodeficientmice,smallfragmentsoftumors,cellsuspensionsderivedfrombloodorfromthedigestionoftumorsintosingle-cellsuspensionsareused.Theimplantationcanbeperformedheterotopicallyororthotopically.Heterotopicimplantation,forexample,subcutaneously,hasadvantagesoverorthotopicimplantationduetothesimplicityofthemethodandmoreconvenientmeasurementoftumorsize.SubcutaneousandintravenousPDXmodelsaremostwidelyusedincancerresearchforsolidtumorsandleukemias.Incontrast,ifthemainaimoftheresearchismetastasesofcertaincancertypes,thanorthotopicmodelsaresuperiorbecauseorthotopicimplantationintohosttissuescanproducemetastasesviathenormalprocessofcancerprogression(110). Duetorecentadvancesinimmunotherapyilluminatingtheimportanceoftheimmuneresponseintumorprogressionandtreatment,newPDXmodelsarenecessary,namelyPDXmodelstogetherwiththehumanimmunesystem,inwhichtheinteractionbetweenhumancancersandthehumanimmunesystemcanbeinvestigated,aswellaspotentialantitumorimmunotherapies(107).Severalmethodscanbeusedtoproducetheseso-calledhumanizedmousemodels.Onesuchmodelcanbeproducedbythetransplantationoftotalperipheralbloodortumor-infiltratinglymphocytesintoimmunodeficientmice.However,thesemethodsareverylimitedincancerresearchbecausetheycauseseveregraft-versus-hostdisease(111).Therefore,anothermethodhasbeenusedtoproducehumanizedmousemodelsthroughthetransplantationofCD34+humanhematopoieticstemcells(HSCs)orprecursorcellsisolatedfromumbilicalcordblood,bonemarrowandperipheralblood,asshowninFigure4.TransplantationofHSCsgivesrisetovariouslineagesofhumanbloodcellsinmice(112). FIGURE4 Figure4.SchematicillustrationofhumanizedPDXmousemodelproduction.CD34+humanhematopoieticstemcells,whichareisolatedfromumbilicalcordblood,aretransplantedintoNSGmice.Thisprocessleadstothedevelopmentofhumanhematopoieticandimmunesystems.PDXofvarioustumorscanthenbeimplantedforfurtherresearch. Thesehumanizedmodelscanbeusedtoinvestigatetheefficacyandmechanismofcancerimmunotherapy,suchasprogrammedcelldeathprotein1(PD-1)-targetedimmunotherapy.Wangetal.(113)describedthedevelopmentofhumanizedNSG(huNSG)micebytransplantationofhuman(h)CD34+hematopoieticprogenitorandstemcells,whichledtothedevelopmentofhumanhematopoieticandimmunesystems.Subsequently,theyimplantedthePDXofNSCLC,sarcoma,bladdercancer,andtriple-negativebreastcancerintosuchhumanizedmice.TheydiscoveredthattumorgrowthcurvesweresimilarinhuNSGincomparisontonon-humanimmunecell-engraftedNSGmice.Treatmentwiththecheckpointinhibitorpembrolizumab,anantibodythattargetsPD-1,causedsignificantgrowthinhibitionofPDXtumorsinhuNSG,butnotNSGmice.Theseresultssuggestthattumor-bearinghuNSGmicecouldrepresentanimportantnewmodelforpreclinicalimmunotherapyresearch.AsimilarresultwasobtainedbyPanetal,(114),whoinvestigatedtheantitumoreffectivenessofpembrolizumabinhumanbladdercancerPDXinhuNSGmice.TheyobservedthattreatmentwithpembrolizumabinhibitedtumorgrowthanddecreasedthenumbersofCD4+PD1+andCD8+PD1+cellsinperipheralbloodandincreasedthenumbersofCD45+andCD8+cellsinPDXs.OnelimitationofNSGmiceisthatdespiteengraftmentwithhumanCD34+cells,thesemicewillacquireonlypartiallyfullymaturehumanbloodcellsduetoincompatibilitybetweenthemouseandhumancytokinesnecessaryforbloodcelldevelopment.Recentmodelsaimtoachievethecombinationoftransgenicorknock-inmousemodelsexpressinghumancytokinestogetherwithNSGandCD34+celltransplantationtoimproveengraftment(115). Furthermore,recentstudieshavedemonstratedthatthemicrobialecosystemhasamajorimpactonthelocalanddistantimmuneresponseandthattheefficacyofimmunetherapieswithcheckpointinhibitors,suchaspembrolizumab,canbediminishedbytheuseofantibioticsandenhancedinthepresenceofspecificgutmicrobes.Tofullyevaluatetheinterplaybetweenimmunotherapiesandthemicrobiota,newmousemodelsareemerging,suchasspecificpathogen-freemicewithdefinedcommensalbacteriaorpreconditionedwithantibiotics,orgerm-freemicelackingcommensalbacteria(116).CommensalbacteriasuchasBifidobacteriaspp.andAkkermansiamuciniphilacanincreasetheefficiencyofanti-programmedcelldeathprotein1ligand(PD-L1)-basedimmunotherapyagainstepithelialtumorsbyimprovingtumorcontrol(117–119).Additionally,acorrelationbetweentheuseofanotherimmunecheckpointinhibitor,ipilimumab(antiCTLA-4antibody),andcolonizationbyBacteroidaleswasobserved.TheefficacyofCTLA-4blockadewasimprovedbythemicrobiotacompositionofBacteroidales,whichaffectsinterleukin12-dependentTh1immuneresponses,thusenablingbettertumorcontrolinmicewhilesparingintestinalintegrity(120).OnelimitationofthesemousemodelswithengraftedhumanmicrobiotaisthatthesemicearelikelyunabletosupportcolonizationbyallcommensalsofthehumanGItract;therefore,itmaybesufficienttofocusonbacteriathatsuccessfullycolonizebothhumansandmice. CurrentDirectionsinTransgenicMouseCancerModels Themousecancermodelsdiscussedintheprevioussectionsclearlyshowagreatimpactofthesemodelsonthestudyofbasicmechanismsofcarcinogenesis,aswellastheevaluationordevelopmentoftherapiesthatarepotentiallyapplicableinhumanoncology.However,bothtraditionaltransgenicmodelsandnewopportunitiesofferedbyCRISPR/Cas9providegreatpromiseinevenmoreefficientandtranslatablemousemodelsforcancerresearchinthefuture.Inthissection,wediscussselectedfieldsinwhichwepredictmajordevelopmentsinthenearfuture:personalizinghumanizedmice,replicatingspecifichumanmutationsinmousemodels,analyzingandmanipulatingthe“cancer”epigenome,andprospectsintheuseofmousemodelsforgenetherapyapplicationsinhumans. PersonalizingHumanizedMice Humanizedmicehaveshowngreatpotentialinpreclinicaloncologystudies.Tofurtherincreasethepotentialofthesemodels,thereisanecessityfortheimmunesysteminhumanizedmicetobecompatiblewithbothitshostenvironmentandwiththeimplantedtumortissuetoaccuratelymodelthepatient’simmuneresponseduringtreatment.Tissueincompatibilityofhumanizedmicethatareengraftedwithanimmunesystemfromonepersonandimplantedwiththetumorofanothercouldbethereasonfortheimmuneresponseobservedinhumanizedmice,whichisthusnotrelatedtothespecifictreatmentappliedtothemice.WhenhumanizedmiceareproducedfromtheengraftmentofCD34+cells,someofthematurexenoreactiveTcellsarealsointroducedintothesemice.TheseTcellsdifferentiatewithintheengraftedbonemarrow,maturewithinthemouseandseemtodisplaysomexenoreactivetendencies(108).However,becausethetransplantedhumanimmunesystemisweakened,itpreventscompleterejectionofthexenograft.OnepossiblesolutiontothisproblemcouldbetheproductionofahumanizedxenograftmodelinwhichtheCD34+cellsandimplementedtumortissuearederivedfromthesamedonor.Kleinetal.producedhumanizedmiceusingCD34+bloodcellsisolatedfrombiopsiedbonemarrowofbreast,lung,prostate,oresophagealcancerpatient,raisingthepossibilityofindividualizedanalysesofantitumorTcellresponses(121).Moreover,anewmelanomaPDXmodelhasbeendesignedwhereintumorcellsandtumor-infiltratingTcellsfromthesamepatientaretransplantedsequentiallyinNOG/NSGknockoutmice.Thismodelwasdevelopedtostudythemostadvancedandmostpromisingcurrentanticancertherapies,immunecheckpointinhibitorsandadoptivecelltransferofautologoustumor-infiltratingTcellsthathavedemonstratedcompletedurableresponsesinasubpopulationofpatientswithadvancedmelanoma(122). ReplicatingSpecificHumanCancerMutationsinMouseModels TheconventionalmousemodelsdescribedinFigure1willcontinuetobeusedincancerresearchbothontheirownandincombinationwithotherapproachessuchastransplantationmodelsandhumanizedmice.However,asalludedpreviously,allthreemajortraditionaltransgenesistechniquessufferduetoaninabilitytoefficientlydeveloppreciseallelereplacementsorinsertions.Initially,CRISPR/Cas9-mediatedmutagenesiswashighlyeffectiveforgeneratingloss-of-functionmodelsbutnotpreciseallelereplacementsorgain-of-functionmutations,whicharemostfrequentincancer.However,recentimprovementsintheCRISPR/Cas9systemhaveimmenselyincreasedtheefficiencyofHDR[e.g.,Gutschneretal.(123);Komoretal.(124)]andhencetheabilitytoengineerprecisemutationsatanysiteinthegenome.Somesuccessfulallelereplacementsinthecancerresearchfieldhavealsobeenachievedinvitro.Forexample,Burgessetal.(125)developedthehomozygousreplacementoftheoncogenicG13DK-RASmutationinahumancolorectalcancercellline,whichrenderedthemsensitivetodrugtreatment.OnemajornoveltyoftheCRISPR/Cas9systemistheabilitytosimultaneouslygeneratemultiplemutations.OnesuchsuccessfulattemptwasrelayedinastudybyWaltonetal.,whomanagedtogeneratetriplegenemutationsthatmadecellsdeficientinTrp53,Brca2,andPtengenes(126).Novelgenefusionmutationsarefrequentlyfoundinhumancancers.TomodelonesuchfusioninmicelinkingDnajb1–Prkacagenesintoonetranscript,Engelholmetal.(127)employedCRISPR/Cas9methodtopreciselydeletearegioninmicethatissyngeneictothehumanregiononchromosome8torecreateaDnajb1–Prkacafusion.Theydemonstratedthatthisfusionistheonlydrivertoinducehepatocellularcarcinoma,withseveralfeaturesresemblinghumanlivercancer. Apartfromprecisemutationsencompassingonenucleotideorsmallergenomicsegments,asdescribedabove,CRISPR/Cas9technologyalsooffersopportunitiestogeneratelargechromosomalaberrations.Recently,studieshavebeenpublishedwiththeaimtoimprovetheefficiencyofgeneratingchromosomalrearrangements.Onesuchstrategy,namedCRISprMEdiatedREarrangementstrategy(128),hasprovenveryefficientinproducingdesiredrearrangementsfromonesingleexperiment.Targetedlargedeletions(upto24.4Mb),duplications,andinversionsinrodentmodelsweredevelopedusingthisapproach,whichwillprobablysoonbeusedincancerresearchtomodelchromosomalaberrationsinvolvedintumorbiology. Cancerisalsocharacterizedbymultipleepigeneticchangesthatcandrivecarcinogenesisandconferresistancetotreatment.Epigenomeediting,especiallybytheCRISPR/Cas9system,nowallowsanalysesofpreciseepigeneticmodificationsandtheireffectsoncancerdevelopmentandtherapy.Onegreatchallengeaheadwillbetoachievethereversionofepigeneticmodifications,includingDNAmethylationandothermechanisms(e.g.,histoneacetylation)atprecisesitesandensurethatsuchaninterventionismitoticallyheritable.Somerecentstudiesincelllineshavedemonstratedthatselectiveepigeneticchanges(e.g.,DNAmethylation)canbeachievedwiththeexpectedoutcomeontheexpressionoftargetgenes(129).ApartfromDNAmethylation,posttranslationalmodificationsofproteins,suchashistoneacetylation,alsopresentanimportantepigeneticmechanismofgeneexpressiondisruptionthatcanleadtocarcinogenesis.InarecentstudybyShrimpetal.(130),dCas9fusedtoanactivator,p300,tocontroltheexpressionoflysineacetyltransferases(KATs)wasapplied.ThispioneeringstudydemonstratedthepotentialofthedCas9-p300systemforstudyinggeneexpressionmechanismsinwhichacetylationplaysacausalrole,whichiscertainlythecaseincancerbiology.Furtherdevelopmentsinthisareaofresearchmayleadtothedevelopmentofmethodsforthespatiotemporalcontrolofacetylationatspecificloci,whichinturncouldleadtotherapeuticeffects.TheabilityofthedCas9-effectorsystemtoactivateorrepressendogenousgeneexpressionalsoprovidesanewanduniqueopportunitytofurtherexaminecancer-associatedcisortransactingregulatorynon-codingRNAs.Thus,recentdevelopmentsinCRISPR/Cas9technologydemonstrategreatpromiseforfutureuseandapplicationintransgenicmousemodelsforstudyingcancerbiology. DeliveryMethods Intransgenicmousemodels,thedeliveryofcomponentstoinducemutationsortodelivermodifiedcellsinvivostillpresentsamajorchallenge.Abriefreviewofthedeliverymethodsusedincancermousemodelsisprovidedbelow,withafocusontheCRISPR/Cas9system.ThedevelopmentofdeliveryvehiclesforCRISPR/Cas9-mediatedtransgenesis,especiallyinthegenerationofinvivomousecancermodels,hasbeenchallengingbecauseoftherequirementsforthedeliveryofmultiplecomponentsinaspatiallyortemporallycontrolledmanner.Nevertheless,somedeliverymethodshavealreadybeenattemptedinmousemodelsofcancerandvarywidelydependingonthetargetcancertypeorscientificquestionsasked. IntravenousinjectionofCas9-editedhematopoieticstemprogenitorcellshasbeensuccessfullyappliedtomodelmyeloidmalignanciesinmice(131)andinaBurkittlymphomamodel(132).Electroporation-baseddelivery,awidelyusedmethodfortheintroductionofdifferentmolecules(chemotherapeuticdrugsandgeneticmaterial)intodifferenttypesofcellsinvitroandinvivo(133),hasalsobeenusedininvitrocancermodeling,forexample,inmodelingalveolarrhabdomyosarcomainmousemyoblasts(134)aswellasinvivoforhematopoieticcell-basedtherapyofmalignancies(135).Aso-calledhydrodynamictailveininjectionofCRISPR/Cas9componentshasbeenappliedinahigh-throughputmultiplex-mutagenesislivercancerscreen(136).Similarly,inagenome-widescreenoflungcancerinmice,subcutaneousinjectionswereused(137).ForNSCLC,basicepithelialcelltransfectionhasalsobeenusedtotargetgenomicrearrangements(138).TodeveloptransgenicmousemodelsharboringCRISPR/Cas9-inducedmutationsineverycellofthebody,classicalmicroinjectionsintofertilizedeggsorblastocysts(formodifiedEScells)arefrequentlyemployed(139).Recently,somesuccessfulattemptsutilizingtheelectroporationofpronuclearzygoteshavealsobeenreported(140,141).Transfectionwiththepolyethyleneiminereagentincombinationwithelectroporationhasbeenemployedtostudybraintumormodel(98).Viralvector-basedtransfectionshavealsobeenattemptedinvivo.Forexample,AAVdeliveryhasbeenusedtostudylungcarcinogenesisbyapplyingthemintra-tracheallyinvivo(96).Furthermore,lentiviral-basedconstructswereusedinatrialinvolvingapancreaticductaladenocarcinomamousemodel(142). Althoughtheabovereviewofvariousdeliverymethodsthathavealreadybeenattemptedintransgenicmousemodelsofcancerdemonstratessomedegreeofinitialsuccess,severalchallengesremaintobesolved.OnesuchchallengeistoenablethedeliveryofCas9ribonucleoproteincomplexesanddonorDNAinvivotoinducehomology-directedDNArepairandrepaircancer-causingmutations.AveryrecentstudybyLeeetal.(143)usedgoldnanoparticlesconjugatedtoDNAandcomplexedwithcationicendosomaldisruptivepolymers,andtheresultsdemonstratedcorrectionoftheDNAmutationthatcausesDuchennemusculardystrophyinmice.Suchanapproachshouldbeofinterestformousecancermodels,especiallyinheritedformsofdrivermutations.Finally,improvementsindeliverymethodstoincreasespecificityandefficiencyandtominimizeoff-targeteventsandimmuneresponsearenecessarytoensurethevalidityofmousecancermodelsandtoincreasetheirtranslationalpotential. PitfallsandLimitations Aswitheverynoveltechnology,therearepitfallsandlimitationsthatmustbeovercomeusingtheCRISPR/Cas9systeminthefuture.Forexample,inmodelingsmalldeletionsandinsertions,currentCRISPR/Cas9-basedgeneeditingusesNHEJ-mediatedmechanismsthatgeneratesmallindels,butthesequencevariationinthegeneratedallelicseriesisenormous.Whileindelsusuallygenerateloss-of-functionalleles,certainindelscanbein-frameorout-of-frame,generatingtruncatedormodifiedgeneproductswithdifferentphenotypiceffects.Apartfromtheaforementionedloss-of-functionmodels,agreaterchallengeisstillthedevelopmentofprecisecancer-drivermutationsinvivobytheHDRmechanism.Thisapproachcontinuestohaveroomforimprovementstoefficientlygenerategain-of-functionmutationsthatareprevalentincarcinogenesis.Asmentionedearlier,theCRISPR/Cas9systemallowsmultiplexingandhencesequentialmutagenesisofcancergenestomodelloss-orgain-of-functioneventsthatarefrequentlyfoundinhumancancergenomes. Theoff-targeteditingactivityoftheCRISPR/Cas9systempresentsaconcernandpotentiallimitation.ThisactivitycouldaffectthephenotypeofCRISPR/Cas9-generatedmousemutants,suchthatthephenotypeisnotrelatedtotheon-targeteventbutrathersomemodification(s)elsewhereinthegenome.Whilesomestudiesinhumancellsreportarelativelyhighfrequencyofoff-targetevents(144),earlydatainmouseembryossuggestthatCRISPR/Cas9off-targeteventsareveryrare(89,145).Toexamineindetailtheextentofoff-targetevents,next-generationwhole-genomesequencinghasrecentlybeenused.Suchstudiesnowshowthatthelikelihoodofoff-targeteventscanbeminimizedbythecarefuldesignofguideRNAsandselectionofgenomictargetsites(146).Thisresultisfurthersupportedinalarge-scalescreenforoff-targeteventsinCRISPR/Cas9transgenicmiceperformedbySinghetal.(105).ForgRNAsselectedtohavelowoff-targethitscores,90foundermicewerescreenedin56ofthehighest-scoringoff-targetsites,butnocasesofoff-targetmutagenesiswererecorded.Tofurtherminimizetheoff-targetactivityofCas9,whichwillespeciallybeimportantineventualhumantherapy,researchershaveattemptedtomodifytheCas9proteinitself,byusingatruncatedgRNAorbyamethodof“pairednicks”(147,148).DirectuseofrecombinantCas9proteincanalsolowertheoff-targeteditingfrequency,mostlikelybecauseCas9proteindegradesmuchfasteronceitisinthecellthantheplasmidencodingCas9(149).Althoughsomerecentstudiesreportadvancesinminimizingoff-targeteffects(150),bothfuturepreclinicalandespeciallyclinicalapplicationswillrequireessentiallynodetectablegenome-wideoff-targetactivity.Developmentsintheareaofhigh-throughputgenome-widesequencingwillcertainlyaidinallowingtheefficientidentificationofsuchoff-targeteffects(151)andshouldberoutinelyusedinfuturecancermodelstudies. AnotherareathatwillmostlikelygainmoreattentionisthecombinationofconventionalcancermodelswithCRISPR/Cas9toolstoeditgenesandsimultaneouslyaffectgeneexpressionwithoutanygenomeediting.Suchorthogonalapproachesforusingthenucleaseactivity-deficientdCas9-effectorsystemincombinationwiththeeditingCas9-basedsystemshouldsoonbemorefrequentlyappliedinmousemodelsofcancer.Namely,Cas9variantsisolatedfromdifferentbacterialspecies(152,153)ormutatedformsofCas9fromthesamespeciesthatrecognizedifferentPAMsitesnexttothesgRNA-bindingsite(154)arenowavailable.Suchcombinatorialapproachescanbeusedtogeneratemorecomplexmousemodelsofhumancancers,whichiscertainlyacomplexdisease. Conclusion Traditionalmousecancermodelshavealreadycontributedimmenselytowardilluminatingthemechanisticunderpinningsofcarcinogenesisandwillcontinuetobeusedontheirownorincombinationwithmorerecentlydevelopedmodels.Onecriticismregardingtheuseoftraditionalmousetransgenicmodelsliesintheirlimitationswithrespecttothemodeldesignandrelativelyslowtranslationalpotentialformorerapidandimprovedbenefitsforcancerpatients. Inrecentyears,newmousemodelsofhumancancerweredevelopedthatmayovercometheselimitationsbyacceleratingthedetectionofnovelcancergenes,decipheringmechanismsofcarcinogenesis,establishingmorerelevantmousecancermodels,andexaminingnovelapproachestocancertreatmentstoobtainthemaximumvalueforcancerpatients.Weenvisagethatfuturedevelopmentsandapplicationsinmousetransgeniccancermodelingwillbefocusedprimarilyintwoareas.OnesuchareaofcurrentandfutureintenseresearchwillbeconcentratedontheuseoftheCRISPR/Cas9systemasthemostversatileandadaptabletransgenictechnologytodateproducingtransgenicmicethatresembletheexactstepsofhumancarcinogenesis.Thesequencedataforanindividualpatienttumor,whichcannowbeobtainedinamorecost-effectiveway,canbefunctionallyvalidatedusingCRISPR/Cas9transgenicinvitroandinvivomousemodels.Thus,alltheimprovementsandresultsfromthesenovelmousecancermodelswillhopefullyhelptorevealmoregenotype-specificsusceptibilitiesofparticularhumancancertypestofinallyenablemorepersonalized,genotype-basedtreatmentsforcancerpatients. Conversely,sinceincreasinglymoreisknownabouttheimportanceofthetumormicroenvironment,notonlyontumorgrowthbutalsoonthelocalandsystemicresponsetotherapy,thereisamoreextensivedemandforthedevelopmentofmousemodelsthatmoreaccuratelyrepresentthehumantumormicroenvironment.HumanizedmousemodelswithimplantedPDXandhumanmicrobiotawouldbringcancerimmunotherapyresearchonestepfurther,enablingtheexaminationofthecomplexinteractionbetweenthetumor,immunesystem,andmicrobiomeasonesysteminthepatient.Thisapproachcouldpotentiallybeusedtoscreenforeffectiveimmunotherapeuticagentsorcombinations,tostudymechanismsofresistancetoimmunotherapiesandtostudyapproachesonhowtoturnimmunologicallycoldtumorsintohotones.Althoughconceptuallydiverse,bothapplicationshavethefinalaimtotailortherapeuticregimensbasedonspecificmolecularprofilesoftumors.Themajorityoftheapplicationsofthesetwoapproachesarestillatthepreclinicalstage,buttheyshowgreatpromisetosoonbecomemoreclinicallyrelevantastheydeveloptowardamorematurestage. Takentogether,forthcomingimprovementsinmousecancermodelsmightpresentonesuccessfulpathwaytopreciseindividualizedcancertherapy,leadingtoimprovedcancerpatientsurvivalandqualityoflife. AuthorContributions Allauthorswereinvolvedwiththeconceptionanddesignofthemanuscript,manuscriptwriting,andfinalapprovalofthemanuscript. ConflictofInterestStatement Theauthorsdeclarethattheresearchwasconductedintheabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstruedasapotentialconflictofinterest. Acknowledgments ThisworkwasfinanciallysupportedbytheSlovenianResearchAgencyProgramsP3-0003andP4-0220andprojectsJ3-8211andJ3-8202.Themanuscriptwaseditedforlanguageby“AmericanJournalExperts.” References 1.WaterstonRH,Lindblad-TohK,BirneyE,RogersJ,AbrilJF,AgarwalP,etal.Initialsequencingandcomparativeanalysisofthemousegenome.Nature(2002)420(6915):520–62.doi:10.1038/nature01262 PubMedAbstract|CrossRefFullText|GoogleScholar 2.OgilvieLA,KovachevA,WierlingC,LangeBMH,LehrachH.Modelsofmodels:atranslationalrouteforcancertreatmentanddrugdevelopment.FrontOncol(2017)7:219.doi:10.3389/fonc.2017.00219 PubMedAbstract|CrossRefFullText|GoogleScholar 3.WalrathJC,HawesJJ,VanDykeT,ReillyKM.Geneticallyengineeredmousemodelsincancerresearch.AdvCancerRes(2010)106:113–64.doi:10.1016/S0065-230X(10)06004-5 PubMedAbstract|CrossRefFullText|GoogleScholar 4.HouseCD,HernandezL,AnnunziataCM.Recenttechnologicaladvancesinusingmousemodelstostudyovariancancer.FrontOncol(2014)4:26.doi:10.3389/fonc.2014.00026 CrossRefFullText|GoogleScholar 5.SmithHW,MullerWJ.Transgenicmousemodels-Aseminalbreakthroughinoncogeneresearch.ColdSpringHarbProtoc(2013)2013:1099–108.doi:10.1101/pdb.top069765 CrossRefFullText|GoogleScholar 6.HanahanD,WagnerEF,PalmiterRD.Theoriginsofoncomice:ahistoryofthefirsttransgenicmicegeneticallyengineeredtodevelopcancer.GenesDev(2007)21:2258–70.doi:10.1101/gad.1583307 PubMedAbstract|CrossRefFullText|GoogleScholar 7.FELASAWorkingGroup,RülickeT,MontagutelliX,PintadoB,ThonR,HedrichHJ.FELASAguidelinesfortheproductionandnomenclatureoftransgenicrodents.LabAnim(2007)41:301–11.doi:10.1258/002367707781282758 PubMedAbstract|CrossRefFullText|GoogleScholar 8.NCIDictionaryofCancerTerms.(2018).Availablefrom:https://www.cancer.gov/publications/dictionaries/cancer-terms/def/transgenic-mice(accessedApril3,2018) GoogleScholar 9.CanoDA,Soto-MorenoA,Leal-CerroA.Geneticallyengineeredmousemodelsofpituitarytumors.FrontOncol(2014)4:203.doi:10.3389/fonc.2014.00203 PubMedAbstract|CrossRefFullText|GoogleScholar 10.SmithCL,BlakeJA,KadinJA,RichardsonJE,BultCJ.Mousegenomedatabase(MGD)-2018:knowledgebaseforthelaboratorymouse.NucleicAcidsRes(2018)46(D1):D836–42.doi:10.1093/nar/gkx1006 PubMedAbstract|CrossRefFullText|GoogleScholar 11.KumarTR,LarsonM,WangH,McDermottJ,BronshteynI.Transgenicmousetechnology:principlesandmethods.MethodsMolBiol(2009)590:335–62.doi:10.1007/978-1-60327-378-7 PubMedAbstract|CrossRefFullText|GoogleScholar 12.DoyleA,McGarryMP,LeeNA,LeeJJ.Theconstructionoftransgenicandgeneknockout/knockinmousemodelsofhumandisease.TransgenicRes(2012)21:327–49.doi:10.1007/s11248-011-9537-3 PubMedAbstract|CrossRefFullText|GoogleScholar 13.BrinsterRL,ChenHY,TrumbauerM,SenearAW,WarrenR,PalmiterRD.Somaticexpressionofherpesthymidinekinaseinmicefollowinginjectionofafusiongeneintoeggs.Cell(1981)27:223–31.doi:10.1016/0092-8674(81)90376-7 PubMedAbstract|CrossRefFullText|GoogleScholar 14.GordonJ,RuddleF.Integrationandstablegermlinetransmissionofgenesinjectedintomousepronuclei.Science(1981)214:1244–6.doi:10.1126/science.6272397 PubMedAbstract|CrossRefFullText|GoogleScholar 15.CostantiniF,LacyE.Introductionofarabbitβ-globingeneintothemousegermline.Nature(1981)294:92–4.doi:10.1038/294092a0 CrossRefFullText|GoogleScholar 16.ChicasA,MacinoG.Characteristicsofpost-transcriptionalgenesilencing.EMBORep(2001)2:992–6.doi:10.1093/embo-reports/kve231 PubMedAbstract|CrossRefFullText|GoogleScholar 17.BrinsterRL,PalmiterRD.Inductionofforeigngenesinanimals.TrendsBiochemSci(1982)7:438–40.doi:10.1016/S0968-0004(82)80012-1 CrossRefFullText|GoogleScholar 18.ZacchignaS,RuizdeAlmodovarC,CarmelietP.Similaritiesbetweenangiogenesisandneuraldevelopment:whatsmallanimalmodelscantellus.CurrTopDevBiol(2007)80:1–55.doi:10.1016/S0070-2153(07)80001-9 CrossRefFullText|GoogleScholar 19.HeyerJ,KwongLN,LoweSW,ChinL.Non-germlinegeneticallyengineeredmousemodelsfortranslationalcancerresearch.NatRevCancer(2010)10:470–80.doi:10.1038/nrc2877 PubMedAbstract|CrossRefFullText|GoogleScholar 20.WorkmanP,AboagyeEO,BalkwillF,BalmainA,BruderG,ChaplinDJ,etal.Guidelinesforthewelfareanduseofanimalsincancerresearch.BrJCancer(2010)102:1555–77.doi:10.1038/sj.bjc.6605642 PubMedAbstract|CrossRefFullText|GoogleScholar 21.PeriAK,WilgenbusP,DahlU,SembH,ChristoforiG.AcausalroleforE-cadherininthetransitionfromadenomatocarcinoma.Nature(1998)392(6672):190–3.doi:10.1038/32433 PubMedAbstract|CrossRefFullText|GoogleScholar 22.KerstenK,deVisserKE,vanMiltenburgMH,JonkersJ.Geneticallyengineeredmousemodelsinoncologyresearchandcancermedicine.EMBOMolMed(2017)9:137–53.doi:10.15252/emmm.201606857 PubMedAbstract|CrossRefFullText|GoogleScholar 23.JiangX-C.Generationofgeneralandtissue-specificgeneknockoutmousemodels.MethodsMolBiol(2013)1027:253–71.doi:10.1007/978-1-60327-369-5_12 PubMedAbstract|CrossRefFullText|GoogleScholar 24.PolatoF,RusconiP,ZangrossiS,MorelliF,BoeriM,MusiA,etal.DRAGO(KIAA0247),anewDNAdamage-responsive,p53-induciblegenethatcooperateswithp53asoncosupprossor.JNatlCancerInst(2014)106:1–10.doi:10.1093/jnci/dju053 CrossRefFullText|GoogleScholar 25.MaddisonK,ClarkeAR.Newapproachesformodellingcancermechanismsinthemouse.JPathol(2005)205:181–93.doi:10.1002/path.1698 PubMedAbstract|CrossRefFullText|GoogleScholar 26.Eisener-DormanAF,LawrenceDA,BolivarVJ.Cautionaryinsightsonknockoutmousestudies:thegeneornotthegene?BrainBehavImmun(2009)23:318–24.doi:10.1016/j.bbi.2008.09.001 PubMedAbstract|CrossRefFullText|GoogleScholar 27.BrandaCS,DymeckiSM.Talkingaboutarevolution:theimpactofsite-specificrecombinasesongeneticanalysesinmice.DevCell(2004)6:7–28.doi:10.1016/S1534-5807(03)00399-X PubMedAbstract|CrossRefFullText|GoogleScholar 28.JacksonEL,WillisN,MercerK,BronsonRT,CrowleyD,MontoyaR,etal.AnalysisoflungtumorinitiationandprogressionusingconditionalexpressionofoncogenicK-ras.GenesDev(2001)15:3243–8.doi:10.1101/gad.943001 PubMedAbstract|CrossRefFullText|GoogleScholar 29.DuPageM,DooleyAL,JacksT.ConditionalmouselungcancermodelsusingadenoviralorlentiviraldeliveryofCrerecombinase.NatProtoc(2009)4:1064–72.doi:10.1038/nprot.2009.95 PubMedAbstract|CrossRefFullText|GoogleScholar 30.MetzgerD,ChambonP.Site-andtime-specificgenetargetinginthemouse.Methods(2001)24:71–80.doi:10.1006/meth.2001.1159 CrossRefFullText|GoogleScholar 31.BäckmanCM,ZhangYJ,MalikN,ShanL,HofferBJ,WestphalH,etal.GeneralizedtetracyclineinducedCrerecombinaseexpressionthroughtheROSA26locusofrecombinantmice.JNeurosciMethods(2009)176:16–23.doi:10.1016/j.jneumeth.2008.08.024 PubMedAbstract|CrossRefFullText|GoogleScholar 32.SunY,ChenX,XiaoD.Tetracycline-inducibleexpressionsystems:newstrategiesandpracticesinthetransgenicmousemodeling.ActaBiochimBiophysSin(Shanghai)(2007)39(4):235–46.doi:10.1111/j.1745-7270.2007.00258.x PubMedAbstract|CrossRefFullText|GoogleScholar 33.RoneyIJ,RudnerAD,CoutureJF,KaernM.Improvementofthereversetetracyclinetransactivatorbysingleaminoacidsubstitutionsthatreduceleakytargetgeneexpressiontoundetectablelevels.SciRep(2016)6:27697.doi:10.1038/srep27697 PubMedAbstract|CrossRefFullText|GoogleScholar 34.ZhongZA,SunW,ChenH,ZhangH,LayYAE,LaneNE,etal.Optimizingtamoxifen-inducibleCre/loxpsystemtoreducetamoxifeneffectonboneturnoverinlongbonesofyoungmice.Bone(2015)81:614–9.doi:10.1016/j.bone.2015.07.034 PubMedAbstract|CrossRefFullText|GoogleScholar 35.ZhengH,ChangL,PatelN,YangJ,LoweL,BurnsDK,etal.InductionofabnormalproliferationbynonmyelinatingSchwanncellstriggersneurofibromaformation.CancerCell(2008)13:117–28.doi:10.1016/j.ccr.2008.01.002 PubMedAbstract|CrossRefFullText|GoogleScholar 36.HaldarM,HedbergML,HockinMF,CapecchiMR.ACreER-basedrandominductionstrategyformodelingtranslocation-associatedsarcomasinmice.CancerRes(2009)69(8):3657–64.doi:10.1158/0008-5472.CAN-08-4127 CrossRefFullText|GoogleScholar 37.IchiseH,HoriA,ShiozawaS,KondoS,KanegaeY,SaitoI,etal.Establishmentofatamoxifen-inducibleCre-drivermousestrainforwidespreadandtemporalgeneticmodificationinadultmice.ExpAnim(2016)65(3):231–44.doi:10.1538/expanim.15-0126 PubMedAbstract|CrossRefFullText|GoogleScholar 38.SmithL.Goodplanningandserendipity:exploitingtheCre/Loxsysteminthetestis.Reproduction(2011)141(2):151–61.doi:10.1530/REP-10-0404 PubMedAbstract|CrossRefFullText|GoogleScholar 39.IwakumaT,LozanoG.Cripplingp53activitiesviaknock-inmutationsinmousemodels.Oncogene(2007)26:2177–84.doi:10.1038/sj.onc.1210278 PubMedAbstract|CrossRefFullText|GoogleScholar 40.BlackburnAC,JerryDJ.KnockoutandtransgenicmiceofTrp53:whathavewelearnedaboutp53inbreastcancer?BreastCancerRes(2002)4:101–11.doi:10.1186/bcr427 PubMedAbstract|CrossRefFullText|GoogleScholar 41.KonishiH,KarakasB,AbukhdeirAM,LauringJ,GustinJP,GarayJP,etal.Knock-inofmutantK-rasinnontumorigenichumanepithelialcellsasanewmodelforstudyingK-ras-mediatedtransformation.CancerRes(2007)67:8460–7.doi:10.1158/0008-5472.CAN-07-0108 CrossRefFullText|GoogleScholar 42.ToMD,WongCE,KarnezisAN,DelRosarioR,DiLauroR,BalmainA.Krasregulatoryelementsandexon4Adeterminemutationspecificityinlungcancer.NatGenet(2008)40:1240–4.doi:10.1038/ng.211 PubMedAbstract|CrossRefFullText|GoogleScholar 43.CasolaS.MousemodelsformiRNAexpression:theROSA26locus.MethodsMolBiol(2010)667:145–63.doi:10.1007/978-1-60761-811-9_10 PubMedAbstract|CrossRefFullText|GoogleScholar 44.HohensteinP,SlightJ,OzdemirD,BurnSF,BerryR,HastieND.High-efficiencyRosa26knock-invectorconstructionforCre-regulatedoverexpressionandRNAi.Pathogenetics(2008)1:3.doi:10.1186/1755-8417-1-3 PubMedAbstract|CrossRefFullText|GoogleScholar 45.VerhaakRGW,GoudswaardCS,VanPuttenW,BijlMA,SandersMA,HugensW,etal.Mutationsinnucleophosmin(NPM1)inacutemyeloidleukemia(AML):associationwithothergeneabnormalitiesandpreviouslyestablishedgeneexpressionsignaturesandtheirfavorableprognosticsignificance.Blood(2005)106:3747–54.doi:10.1182/blood-2005-05-2168 PubMedAbstract|CrossRefFullText|GoogleScholar 46.SportolettiP,VarasanoE,RossiR,BereshchenkoO,CecchiniD,GionfriddoI,etal.ThehumanNPM1mutationAperturbsmegakaryopoiesisinaconditionalmousemodel.Blood(2013)121:3447–58.doi:10.1182/blood-2012-08-449553 PubMedAbstract|CrossRefFullText|GoogleScholar 47.LaksoM,SauerB,MosingerB,LeeEJ,ManningRW,YuSH,etal.Targetedoncogeneactivationbysite-specificrecombinationintransgenicmice.ProcNatlAcadSciUSA(1992)89:6232–6.doi:10.1073/pnas.89.14.6232 PubMedAbstract|CrossRefFullText|GoogleScholar 48.DragatsisI,ZeitlinS.Amethodforthegenerationofconditionalgenerepairmutationsinmice.NucleicAcidsRes(2001)29:E10.doi:10.1093/nar/29.3.e10 PubMedAbstract|CrossRefFullText|GoogleScholar 49.JohnsonL,MercerK,GreenbaumD,BronsonRT,CrowleyD,TuvesonDA,etal.SomaticactivationoftheK-rasoncogenecausesearlyonsetlungcancerinmice.Nature(2001)410:1111–6.doi:10.1038/35074129 PubMedAbstract|CrossRefFullText|GoogleScholar 50.DrostR,BouwmanP,RottenbergS,BoonU,SchutE,KlarenbeekS,etal.BRCA1RINGfunctionisessentialfortumorsuppressionbutdispensablefortherapyresistance.CancerCell(2011)20:797–809.doi:10.1016/j.ccr.2011.11.014 PubMedAbstract|CrossRefFullText|GoogleScholar 51.AbeT,FujimoriT.Reportermouselinesforfluorescenceimaging.DevGrowthDiffer(2013)55:390–405.doi:10.1111/dgd.12062 PubMedAbstract|CrossRefFullText|GoogleScholar 52.SattarzadehA,SaberianfarR,ZipfelWR,MenassaR,HansonMR.GreentoredphotoconversionofGFPforproteintrackinginvivo.SciRep(2015)5:11771.doi:10.1038/srep11771 PubMedAbstract|CrossRefFullText|GoogleScholar 53.TurbofpF.Enhancedredandfar-redfluorescentproteinsforinvivoimaging.NatMethods(2009)6:1–2.doi:10.1038/nmeth.f.249 CrossRefFullText|GoogleScholar 54.ThorneN,IngleseJ,AuldDS.Illuminatinginsightsintofireflyluciferaseandotherbioluminescentreportersusedinchemicalbiology.ChemBiol(2010)17:646–57.doi:10.1016/j.chembiol.2010.05.012 PubMedAbstract|CrossRefFullText|GoogleScholar 55.MomotaH,HollandEC.Bioluminescencetechnologyforimagingcellproliferation.CurrOpinBiotechnol(2005)16:681–6.doi:10.1016/j.copbio.2005.10.012 PubMedAbstract|CrossRefFullText|GoogleScholar 56.TorcellanT,StolpJ,ChtanovaT.Invivoimagingshedslightonimmunecellmigrationandfunctionincancer.FrontImmunol(2017)8:309.doi:10.3389/fimmu.2017.00309 PubMedAbstract|CrossRefFullText|GoogleScholar 57.TanakaA,SakaguchiS.RegulatoryTcellsincancerimmunotherapy.CellRes(2017)27:109–18.doi:10.1038/cr.2016.151 PubMedAbstract|CrossRefFullText|GoogleScholar 58.BauerCA,KimEY,MarangoniF,CarrizosaE,ClaudioNM,MempelTR.DynamicTreginteractionswithintratumoralAPCspromotelocalCTLdysfunction.JClinInvest(2014)124:2425–40.doi:10.1172/JCI66375 PubMedAbstract|CrossRefFullText|GoogleScholar 59.MarkelcB,SersaG,CemazarM.Differentialmechanismsassociatedwithvasculardisruptingactionofelectrochemotherapy:intravitalmicroscopyonthelevelofsinglenormalandtumorbloodvessels.PLoSOne(2013)8:e59557.doi:10.1371/journal.pone.0059557 PubMedAbstract|CrossRefFullText|GoogleScholar 60.KamensekU,SersaG,CemazarM.Evaluationofp21promoterforinterleukin12radiationinducedtranscriptionaltargetinginamousetumormodel.MolCancer(2013)12:136.doi:10.1186/1476-4598-12-136 PubMedAbstract|CrossRefFullText|GoogleScholar 61.ZitvogelL,PittJM,DaillèreR,SmythMJ,KroemerG.Mousemodelsinoncoimmunology.NatRevCancer(2016)16:759–73.doi:10.1038/nrc.2016.91 CrossRefFullText|GoogleScholar 62.HuijbersIJ,KrimpenfortP,BernsA,JonkersJ.Rapidvalidationofcancergenesinchimerasderivedfromestablishedgeneticallyengineeredmousemodels.Bioessays(2011)33:701–10.doi:10.1002/bies.201100018 PubMedAbstract|CrossRefFullText|GoogleScholar 63.ZhouY,RideoutWM,ZiT,BresselA,ReddypalliS,RancourtR,etal.ChimericmousetumormodelsrevealdifferencesinpathwayactivationbetweenERBBfamily–andKRAS-dependentlungadenocarcinomas.NatBiotechnol(2010)28(1):71–8.doi:10.1038/nbt.1595 CrossRefFullText|GoogleScholar 64.DuPageM,CheungAF,MazumdarC,WinslowMM,BronsonR,SchmidtLM,etal.EndogenousTcellresponsestoantigensexpressedinlungadenocarcinomasdelaymalignanttumorprogression.CancerCell(2011)19(1):72–85.doi:10.1016/j.ccr.2010.11.011 PubMedAbstract|CrossRefFullText|GoogleScholar 65.HemannMT,FridmanJS,ZilfouJT,HernandoE,PaddisonPJ,Cordon-CardoC,etal.Anepi-allelicseriesofp53hypomorphscreatedbystableRNAiproducesdistincttumorphenotypesinvivo.NatGenet(2003)33:396–400.doi:10.1038/ng1091 PubMedAbstract|CrossRefFullText|GoogleScholar 66.ZuberJ,RadtkeI,PardeeTS,ZhaoZ,RappaportAR,LuoW,etal.MousemodelsofhumanAMLaccuratelypredictchemotherapyresponse.GenesDev(2009)23(7):877–89.doi:10.1101/gad.1771409 PubMedAbstract|CrossRefFullText|GoogleScholar 67.LauchleJO,KimD,LeDT,AkagiK,CroneM,KrismanK,etal.ResponseandresistancetoMEKinhibitioninleukaemiasinitiatedbyhyperactiveRas.Nature(2009)461(7262):411–4.doi:10.1038/nature08279 PubMedAbstract|CrossRefFullText|GoogleScholar 68.BockBC,SteinU,SchmittCA,AugustinHG.Mousemodelsofhumancancer.CancerRes(2014)74(17):4671–6.doi:10.1158/0008-5472.CAN-14-1424 CrossRefFullText|GoogleScholar 69.GoodierJL.Restrictingretrotransposons:areview.MobDNA(2016)7:16.doi:10.1186/s13100-016-0070-z PubMedAbstract|CrossRefFullText|GoogleScholar 70.RanzaniM,AnnunziatoS,AdamsDJ,MontiniE.Cancergenediscovery:exploitinginsertionalmutagenesis.MolCancerRes(2013)11:1141–58.doi:10.1158/1541-7786.MCR-13-0244 PubMedAbstract|CrossRefFullText|GoogleScholar 71.RadR,RadL,WangW,CadinanosJ,VassiliouG,RiceS,etal.PiggyBactransposonmutagenesis:atoolforcancergenediscoveryinmice.Science(2010)330:1104–7.doi:10.1126/science.1193004 PubMedAbstract|CrossRefFullText|GoogleScholar 72.AronovichEL,McIvorRS,HackettPB.TheSleepingBeautytransposonsystem:anon-viralvectorforgenetherapy.HumMolGenet(2011)20:R14–20.doi:10.1093/hmg/ddr140 CrossRefFullText|GoogleScholar 73.KebriaeiP,IzsvákZ,NarayanavariSA,SinghH,IvicsZ.GenetherapywiththeSleepingBeautytransposonsystem.TrendsGenet(2017)33:852–70.doi:10.1016/j.tig.2017.08.008 PubMedAbstract|CrossRefFullText|GoogleScholar 74.IvicsZ,LiMA,MátésL,BoekeJD,NagyA,BradleyA,etal.Transposon-mediatedgenomemanipulationinvertebrates.NatMethods(2009)6:415–22.doi:10.1038/nmeth.1332 PubMedAbstract|CrossRefFullText|GoogleScholar 75.HouX,DuY,DengY,WuJ,CaoG.SleepingBeautytransposonsystemforgeneticetiologicalresearchandgenetherapyofcancers.CancerBiolTher(2015)16:8–16.doi:10.4161/15384047.2014.986944 PubMedAbstract|CrossRefFullText|GoogleScholar 76.TschidaBR,LargaespadaDA,KengVW.Mousemodelsofcancer:SleepingBeautytransposonsforinsertionalmutagenesisscreensandreversegeneticstudies.SeminCellDevBiol(2014)27:86–95.doi:10.1016/j.semcdb.2014.01.006 PubMedAbstract|CrossRefFullText|GoogleScholar 77.KengVW,VillanuevaA,ChiangDY,DupuyAJ,RyanBJ,MatiseI,etal.Aconditionaltransposon-basedinsertionalmutagenesisscreenforgenesassociatedwithmousehepatocellularcarcinoma.NatBiotechnol(2009)27(3):264–74.doi:10.1038/nbt.1526 PubMedAbstract|CrossRefFullText|GoogleScholar 78.GrabundzijaI,IrgangM,MátésL,BelayE,MatraiJ,Gogol-DöringA,etal.Comparativeanalysisoftransposableelementvectorsystemsinhumancells.MolTher(2010)18:1200–9.doi:10.1038/mt.2010.47 PubMedAbstract|CrossRefFullText|GoogleScholar 79.LiT,ShuaiL,MaoJ,WangX,WangM,ZhangX,etal.EfficientproductionoffluorescenttransgenicratsusingthepiggyBactransposon.SciRep(2016)6:33225.doi:10.1038/srep33225 PubMedAbstract|CrossRefFullText|GoogleScholar 80.LeeH.Geneticallyengineeredmousemodelsfordrugdevelopmentandpreclinicaltrials.BiomolTher(Seoul)(2014)22:267–74.doi:10.4062/biomolther.2014.074 PubMedAbstract|CrossRefFullText|GoogleScholar 81.CurtisCD,NardulliAM.UsingRNAinterferencetostudyproteinfunction.MethodsMolBiol(2009)505:187–204.doi:10.1007/978-1-60327-575-0_11 PubMedAbstract|CrossRefFullText|GoogleScholar 82.FuHJ,JiaLT,BaoW,ZhaoJ,MengYL,WangCJ,etal.Stableknockdownofestrogenreceptorabyvector-basedRNAinterferencesuppressesproliferationandenhancesapoptosisinbreastcancercells.CancerBiolTher(2006)5:842–7.doi:10.4161/cbt.5.7.2840 CrossRefFullText|GoogleScholar 83.LuH,ZhuH.EffectofsiRNA-mediatedgenesilencingoftransketolaseonA549lungcancercells.OncolLett(2017)14:5906–12.doi:10.3892/ol.2017.6916 PubMedAbstract|CrossRefFullText|GoogleScholar 84.GajT,GersbachCA,BarbasCF3rd.ZFN,TALENandCRISPR/Casbasedmethodsforgenomeengineering.TrendsBiotechnol(2013)31:397–405.doi:10.1016/j.tibtech.2013.04.004.ZFN PubMedAbstract|CrossRefFullText|GoogleScholar 85.CarberyID,JiD,HarringtonA,BrownV,WeinsteinEJ,LiawL,etal.Targetedgenomemodificationinmiceusingzinc-fingernucleases.Genetics(2010)186:451–9.doi:10.1534/genetics.110.117002 PubMedAbstract|CrossRefFullText|GoogleScholar 86.LeeJ,RhoJ-L,DevkotaS,SungYH,LeeHW.Developinggeneticallyengineeredmousemodelsusingengineerednucleases:currentstatus,challenges,andthewayforward.DrugDiscovTodayDisModel(2016)20:13–20.doi:10.1016/j.ddmod.2017.07.003 CrossRefFullText|GoogleScholar 87.SungYH,BaekIJ,KimDH,JeonJ,LeeJ,LeeK,etal.KnockoutmicecreatedbyTALEN-mediatedgenetargeting.NatBiotechnol(2013)31:23–4.doi:10.1038/nbt.2477 CrossRefFullText|GoogleScholar 88.YangH,WangH,JaenischR.GeneratinggeneticallymodifiedmiceusingCRISPR/Cas-mediatedgenomeengineering.NatProtoc(2014)9:1956–68.doi:10.1038/nprot.2014.134 PubMedAbstract|CrossRefFullText|GoogleScholar 89.WangH,YangH,ShivalilaCS,DawlatyMM,ChengAW,ZhangF,etal.One-stepgenerationofmicecarryingmutationsinmultiplegenesbyCRISPR/cas-mediatedgenomeengineering.Cell(2013)153:910–8.doi:10.1016/j.cell.2013.04.025 PubMedAbstract|CrossRefFullText|GoogleScholar 90.KleinstiverBP,PrewMS,TsaiSQ,TopkarVV,NguyenNT,ZhengZ,etal.EngineeredCRISPR-Cas9nucleaseswithalteredPAMspecificities.Nature(2015)523:481–5.doi:10.1038/nature14592 PubMedAbstract|CrossRefFullText|GoogleScholar 91.HsuPD,LanderES,ZhangF.DevelopmentandapplicationsofCRISPR-Cas9forgenomeengineering.Cell(2014)157:1262–78.doi:10.1016/j.cell.2014.05.010 PubMedAbstract|CrossRefFullText|GoogleScholar 92.CongL,RanFA,CoxD,LinS,BarrettoR,HabibN,etal.MultiplexgenomeengineeringusingCRISPR/Cassystems.Science(2013)339:819–23.doi:10.1126/science.1231143 CrossRefFullText|GoogleScholar 93.QiLS,LarsonMH,GilbertLA,DoudnaJA,WeissmanJS,ArkinAP,etal.RepurposingCRISPRasanRNA-guidedplatformforsequence-specificcontrolofgeneexpression.Cell(2013)152:1173–83.doi:10.1016/j.cell.2013.02.022 PubMedAbstract|CrossRefFullText|GoogleScholar 94.ChenB,HuangB.ImaginggenomicelementsinlivingcellsusingCRISPR/Cas9.MethodsEnzymol(2014)546:337–54.doi:10.1016/B978-0-12-801185-0.00016-7 PubMedAbstract|CrossRefFullText|GoogleScholar 95.ChiouSH,WintersIP,WangJ,NaranjoS,DudgeonC,TamburiniFB,etal.PancreaticcancermodelingusingretrogradeviralvectordeliveryandinvivoCRISPR/Cas9-mediatedsomaticgenomeediting.GenesDev(2015)29:1576–85.doi:10.1101/gad.264861.115 PubMedAbstract|CrossRefFullText|GoogleScholar 96.PlattRJ,ChenS,ZhouY,YimMJ,SwiechL,KemptonHR,etal.CRISPR-Cas9knockinmiceforgenomeeditingandcancermodeling.Cell(2014)159:440–55.doi:10.1016/j.cell.2014.09.014 PubMedAbstract|CrossRefFullText|GoogleScholar 97.XueW,ChenS,YinH,TammelaT,PapagiannakopoulosT,JoshiNS,etal.CRISPR-mediateddirectmutationofcancergenesinthemouseliver.Nature(2014)514:380–4.doi:10.1038/nature13589 PubMedAbstract|CrossRefFullText|GoogleScholar 98.ZuckermannM,HovestadtV,Knobbe-ThomsenCB,ZapatkaM,NorthcottPA,SchrammK,etal.SomaticCRISPR/Cas9-mediatedtumoursuppressordisruptionenablesversatilebraintumourmodelling.NatCommun(2015)6:7391.doi:10.1038/ncomms8391 PubMedAbstract|CrossRefFullText|GoogleScholar 99.MaddaloD,ManchadoE,ConcepcionCP,BonettiC,VidigalJA,HanYC,etal.InvivoengineeringofoncogenicchromosomalrearrangementswiththeCRISPR/Cas9system.Nature(2014)516:423–8.doi:10.1038/nature13902 PubMedAbstract|CrossRefFullText|GoogleScholar 100.CookPJ,ThomasR,KannanR,DeLeonES,DrilonA,RosenblumMK,etal.SomaticchromosomalengineeringidentifiesBCAN-NTRK1asapotentgliomadriverandtherapeutictarget.NatCommun(2017)8:15987.doi:10.1038/ncomms15987 CrossRefFullText|GoogleScholar 101.WangG,ChowRD,YeL,GuzmanCD,DaiX,DongMB,etal.MappingafunctionalcancergenomeatlasoftumorsuppressorsinmouseliverusingAAV-CRISPR–mediateddirectinvivoscreening.SciAdv(2018)4:eaao5508.doi:10.1126/sciadv.aao5508 CrossRefFullText|GoogleScholar 102.BraunCJ,BrunoPM,HorlbeckMA,GilbertLA,WeissmanJS,HemannMT.VersatileinvivoregulationoftumorphenotypesbydCas9-mediatedtranscriptionalperturbation.ProcNatlAcadSciUSA(2016)113:E3892–900.doi:10.1073/pnas.1600582113 PubMedAbstract|CrossRefFullText|GoogleScholar 103.MaederML,LinderSJ,CascioVM,FuY,HoQH,JoungJK.CRISPRRNA-guidedactivationofendogenoushumangenes.NatMethods(2013)10:977–9.doi:10.1038/nmeth.2598 PubMedAbstract|CrossRefFullText|GoogleScholar 104.DowLE,LoweSW.Lifeinthefastlane:mammaliandiseasemodelsinthegenomicsera.Cell(2012)148:1099–109.doi:10.1016/j.cell.2012.02.023 PubMedAbstract|CrossRefFullText|GoogleScholar 105.SinghP,SchimentiJC,Bolcun-FilasE.Amousegeneticist’spracticalguidetoCRISPRapplications.Genetics(2015)199:1–15.doi:10.1534/genetics.114.169771 CrossRefFullText|GoogleScholar 106.DobroleckiLE,AirhartSD,AlferezDG,AparicioS,BehbodF,Bentires-AljM,etal.Patient-derivedxenograft(PDX)modelsinbasicandtranslationalbreastcancerresearch.CancerMetastasisRev(2016)35:547–73.doi:10.1007/s10555-016-9653-x PubMedAbstract|CrossRefFullText|GoogleScholar 107.LaiY,WeiX,LinS,QinL,ChengL,LiP.Currentstatusandperspectivesofpatient-derivedxenograftmodelsincancerresearch.JHematolOncol(2017)10:106.doi:10.1186/s13045-017-0470-7 PubMedAbstract|CrossRefFullText|GoogleScholar 108.MortonCL,HoughtonPJ.Establishmentofhumantumorxenograftsinimmunodeficientmice.NatProtoc(2007)2:247–50.doi:10.1038/nprot.2007.25 PubMedAbstract|CrossRefFullText|GoogleScholar 109.ShultzLD,GoodwinN,IshikawaF,HosurV,LyonsBL,GreinerDL.Humancancergrowthandtherapyinimmunodeficientmousemodels.ColdSpringHarbProtoc(2014)2014:694–708.doi:10.1101/pdb.top073585 PubMedAbstract|CrossRefFullText|GoogleScholar 110.Paez-RibesM,ManS,XuP,KerbelRS.Developmentofpatientderivedxenograftmodelsofovertspontaneousbreastcancermetastasis:acautionarynote.PLoSOne(2016)11:e0158034.doi:10.1371/journal.pone.0158034 PubMedAbstract|CrossRefFullText|GoogleScholar 111.AliN,FlutterB,SanchezRodriguezR,Sharif-PaghalehE,BarberLD,LombardiG,etal.Xenogeneicgraft-versus-host-diseaseinNOD-scidIL-2RγnullmicedisplayaT-effectormemoryphenotype.PLoSOne(2012)7:e44219.doi:10.1371/journal.pone.0044219 PubMedAbstract|CrossRefFullText|GoogleScholar 112.TannerA,TaylorSE,DecottigniesW,BergesBK.Humanizedmiceasamodeltostudyhumanhematopoieticstemcelltransplantation.StemCellsDev(2014)23:76–82.doi:10.1089/scd.2013.0265 PubMedAbstract|CrossRefFullText|GoogleScholar 113.WangM,YaoL-C,ChengM,CaiD,MartinekJ,PanC-X,etal.HumanizedmiceinstudyingefficacyandmechanismsofPD-1-targetedcancerimmunotherapy.FASEBJ(2018)32(3):1537–49.doi:10.1096/fj.201700740R CrossRefFullText|GoogleScholar 114.PanC,ShiW,MaA-H,ZhangH,LaraP,KeckJG,etal.Humanizedmice(humice)carryingpatient-derivedxenograft(PDX)asaplatformtodevelopimmunotherapyinbladdercancer(BCa).JClinOncol(2017)35:381.doi:10.1200/JCO.2017.35.6_suppl.381 CrossRefFullText|GoogleScholar 115.WalshNC,KenneyLL,JangalweS,AryeeK-E,GreinerDL,BrehmMA,etal.Humanizedmousemodelsofclinicaldisease.AnnuRevPathol(2017)12:187–215.doi:10.1146/annurev-pathol-052016-100332 PubMedAbstract|CrossRefFullText|GoogleScholar 116.ZitvogelL,MaY,RaoultD,KroemerG,GajewskiTF.Themicrobiomeincancerimmunotherapy:diagnostictoolsandtherapeuticstrategies.Science(2018)359:1366–70.doi:10.1126/science.aar6918 PubMedAbstract|CrossRefFullText|GoogleScholar 117.SivanA,CorralesL,HubertN,WilliamsJB,Aquino-MichaelsK,EarleyZM,etal.CommensalBifidobacteriumpromotesantitumorimmunityandfacilitatesanti-PD-L1efficacy.Science(2015)350:1084–9.doi:10.1126/science.aac4255 PubMedAbstract|CrossRefFullText|GoogleScholar 118.MatsonV,FesslerJ,BaoR,ChongsuwatT,ZhaY,AlegreML,etal.Thecommensalmicrobiomeisassociatedwithanti-PD-1efficacyinmetastaticmelanomapatients.Science(2018)359:104–8.doi:10.1126/science.aao3290 PubMedAbstract|CrossRefFullText|GoogleScholar 119.RoutyB,LeChatelierE,DerosaL,DuongCPM,AlouMT,DaillèreR,etal.GutmicrobiomeinfluencesefficacyofPD-1-basedimmunotherapyagainstepithelialtumors.Science(2018)359:91–7.doi:10.1126/science.aan3706 CrossRefFullText|GoogleScholar 120.VétizouM,PittJM,DaillèreR,LepageP,WaldschmittN,FlamentC,etal.AnticancerimmunotherapybyCTLA-4blockadereliesonthegutmicrobiota.Science(2015)350:1079–84.doi:10.1126/science.aad1329 PubMedAbstract|CrossRefFullText|GoogleScholar 121.Werner-KleinM,ProskeJ,WernoC,SchneiderK,HofmannHS,RackB,etal.Immunehumanizationofimmunodeficientmiceusingdiagnosticbonemarrowaspiratesfromcarcinomapatients.PLoSOne(2014)9:e97860.doi:10.1371/journal.pone.0097860 PubMedAbstract|CrossRefFullText|GoogleScholar 122.JespersenH,LindbergMF,DoniaM,SöderbergEMV,AndersenR,KellerU,etal.ClinicalresponsestoadoptiveT-celltransfercanbemodeledinanautologousimmune-humanizedmousemodel.NatCommun(2017)8:707.doi:10.1038/s41467-017-00786-z PubMedAbstract|CrossRefFullText|GoogleScholar 123.GutschnerT,HaemmerleM,GenoveseG,DraettaGF,ChinL.Post-translationalregulationofCas9duringG1enhanceshomology-directedrepair.CellRep(2016)14:1555–66.doi:10.1016/j.celrep.2016.01.019 PubMedAbstract|CrossRefFullText|GoogleScholar 124.KomorAC,KimYB,PackerMS,ZurisJA,LiuDR.ProgrammableeditingofatargetbaseingenomicDNAwithoutdouble-strandedDNAcleavage.Nature(2016)533:420–4.doi:10.1038/nature17946 PubMedAbstract|CrossRefFullText|GoogleScholar 125.BurgessMR,HwangE,MroueR,BielskiCM,WandlerAM,HuangBJ,etal.KRASallelicimbalanceenhancesfitnessandmodulatesMAPkinasedependenceincancer.Cell(2017)168:817–29.e15.doi:10.1016/j.cell.2017.01.020 PubMedAbstract|CrossRefFullText|GoogleScholar 126.WaltonJB,FarquharsonM,MasonS,PortJ,KruspigB,DowsonS,etal.CRISPR/Cas9-derivedmodelsofovarianhighgradeserouscarcinomatargetingBrca1,PtenandNf1,andcorrelationwithplatinumsensitivity.SciRep(2017)7:1–11.doi:10.1038/s41598-017-17119-1 CrossRefFullText|GoogleScholar 127.EngelholmLH,RiazA,SerraD,Dagnaes-HansenF,JohansenJV,Santoni-RugiuE,etal.CRISPR/Cas9engineeringofadultmouseliverdemonstratesthattheDnajb1–Prkacagenefusionissufficienttoinducetumorsresemblingfibrolamellarhepatocellularcarcinoma.Gastroenterology(2017)153:1662–73.e10.doi:10.1053/j.gastro.2017.09.008 CrossRefFullText|GoogleScholar 128.BirlingM-C,SchaefferL,AndréP,LindnerL,MaréchalD,AyadiA,etal.EfficientandrapidgenerationoflargegenomicvariantsinratsandmiceusingCRISMERE.SciRep(2017)7:43331.doi:10.1038/srep43331 PubMedAbstract|CrossRefFullText|GoogleScholar 129.VojtaA,DobrinicP,TadicV,BockorL,KoracP,JulgB,etal.RepurposingtheCRISPR-Cas9systemfortargetedDNAmethylation.NucleicAcidsRes(2016)44:5615–28.doi:10.1093/nar/gkw159 PubMedAbstract|CrossRefFullText|GoogleScholar 130.ShrimpJH,GroseC,WidmeyerSRT,ThorpeAL,JadhavA,MeierJL.ChemicalcontrolofaCRISPR-Cas9acetyltransferase.ACSChemBiol(2018)13:455–60.doi:10.1021/acschembio.7b00883 PubMedAbstract|CrossRefFullText|GoogleScholar 131.HecklD,KowalczykMS,YudovichD,BelizaireR,PuramRV,McConkeyME,etal.GenerationofmousemodelsofmyeloidmalignancywithcombinatorialgeneticlesionsusingCRISPR-Cas9genomeediting.NatBiotechnol(2014)32:941–6.doi:10.1038/nbt.2951 PubMedAbstract|CrossRefFullText|GoogleScholar 132.AubreyBJ,KellyGL,KuehAJ,BrennanMS,O’ConnorL,MillaL,etal.AninduciblelentiviralguideRNAplatformenablestheidentificationoftumor-essentialgenesandtumor-promotingmutationsinvivo.CellRep(2015)10:1422–32.doi:10.1016/j.celrep.2015.02.002 CrossRefFullText|GoogleScholar 133.SavarinM,KamensekU,CemazarM,HellerR,SersaG.ElectrotransferofplasmidDNAradiosensitizesB16F10tumorsthroughactivationofimmuneresponse.RadiolOncol(2017)51:30–9.doi:10.1515/raon-2017-0011 PubMedAbstract|CrossRefFullText|GoogleScholar 134.LagutinaIV,ValentineV,PicchioneF,HarwoodF,ValentineMB,Villarejo-BalcellsB,etal.ModelingofthehumanalveolarrhabdomyosarcomaPax3-foxo1chromosometranslocationinmousemyoblastsusingCRISPR-Cas9nuclease.PLoSGenet(2015)11:e1004951.doi:10.1371/journal.pgen.1004951 PubMedAbstract|CrossRefFullText|GoogleScholar 135.MandalPK,FerreiraLMR,CollinsR,MeissnerTB,BoutwellCL,FriesenM,etal.EfficientablationofgenesinhumanhematopoieticstemandeffectorcellsusingCRISPR/Cas9.CellStemCell(2014)15:643–52.doi:10.1016/j.stem.2014.10.004 PubMedAbstract|CrossRefFullText|GoogleScholar 136.WeberJ,ÖllingerR,FriedrichM,EhmerU,BarenboimM,SteigerK,etal.CRISPR/Cas9somaticmultiplex-mutagenesisforhigh-throughputfunctionalcancergenomicsinmice.ProcNatlAcadSciUSA(2015)112:13982–7.doi:10.1073/pnas.1512392112 PubMedAbstract|CrossRefFullText|GoogleScholar 137.ChenS,SanjanaNE,ZhengK,ShalemO,LeeK,ShiX,etal.Genome-wideCRISPRscreeninamousemodeloftumorgrowthandmetastasis.Cell(2015)160:1246–60.doi:10.1016/j.cell.2015.02.038 PubMedAbstract|CrossRefFullText|GoogleScholar 138.ChoiPS,MeyersonM.TargetedgenomicrearrangementsusingCRISPR/Castechnology.NatCommun(2014)5:3728.doi:10.1038/ncomms4728 PubMedAbstract|CrossRefFullText|GoogleScholar 139.DowLE,FisherJ,O’RourkeKP,MuleyA,KastenhuberER,LivshitsG,etal.InducibleinvivogenomeeditingwithCRISPR-Cas9.NatBiotechnol(2015)33:390–4.doi:10.1038/nbt.3155 PubMedAbstract|CrossRefFullText|GoogleScholar 140.QinW,DionSL,KutnyPM,ZhangY,ChengAW,JilletteNL,etal.EfficientCRISPR/cas9-mediatedgenomeeditinginmicebyzygoteelectroporationofnuclease.Genetics(2015)200:423–30.doi:10.1534/genetics.115.176594 PubMedAbstract|CrossRefFullText|GoogleScholar 141.HashimotoM,TakemotoT.ElectroporationenablestheefficientmRNAdeliveryintothemousezygotesandfacilitatesCRISPR/Cas-basedgenomeediting.SciRep(2015)5:1–8.doi:10.1038/srep11315 CrossRefFullText|GoogleScholar 142.MazurPK,HernerA,MelloSS,WirthM,HausmannS,Sánchez-RiveraFJ,etal.CombinedinhibitionofBETfamilyproteinsandhistonedeacetylasesasapotentialepigenetics-basedtherapyforpancreaticductaladenocarcinoma.NatMed(2015)21:1163–71.doi:10.1038/nm.3952 PubMedAbstract|CrossRefFullText|GoogleScholar 143.LeeK,ConboyM,ParkHM,JiangF,KimHJ,DewittMA,etal.NanoparticledeliveryofCas9ribonucleoproteinanddonorDNAinvivoinduceshomology-directedDNArepair.NatBiomedEng(2017)1:889–901.doi:10.1038/s41551-017-0137-2 PubMedAbstract|CrossRefFullText|GoogleScholar 144.FuY,FodenJA,KhayterC,MaederML,ReyonD,JoungJK,etal.High-frequencyoff-targetmutagenesisinducedbyCRISPR-Casnucleasesinhumancells.NatBiotechnol(2013)31(9):822–6.doi:10.1038/nbt.2623 PubMedAbstract|CrossRefFullText|GoogleScholar 145.YangH,WangH,ShivalilaCS,ChengAW,ShiL,JaenischR.XOne-stepgenerationofmicecarryingreporterandconditionalallelesbyCRISPR/cas-mediatedgenomeengineering.Cell(2013)154(6):1370–9.doi:10.1016/j.cell.2013.08.022 CrossRefFullText|GoogleScholar 146.VeresA,GosisBS,DingQ,CollinsR,RagavendranA,BrandH,etal.Lowincidenceofoff-targetmutationsinindividualCRISPR-Cas9andTALENtargetedhumanstemcellclonesdetectedbywhole-genomesequencing.CellStemCell(2014)15(1):27–30.doi:10.1016/j.stem.2014.04.020 PubMedAbstract|CrossRefFullText|GoogleScholar 147.RanFA,HsuPD,WrightJ,AgarwalaV,ScottDA,ZhangF.GenomeengineeringusingtheCRISPR-Cas9system.NatProtoc(2013)8(11):2281–308.doi:10.1038/nprot.2013.143 CrossRefFullText|GoogleScholar 148.JinekM,EastA,ChengA,LinS,MaE,DoudnaJ.RNA-programmedgenomeeditinginhumancells.Elife(2013):e00471.doi:10.7554/eLife.00471 PubMedAbstract|CrossRefFullText|GoogleScholar 149.RamakrishnaS,KwakuDadAB,BeloorJ,GopalappaR,LeeSK,KimH.Genedisruptionbycell-penetratingpeptide-mediateddeliveryofCas9proteinandguideRNA.GenomeRes(2014)24(6):1020–7.doi:10.1101/gr.171264.113 PubMedAbstract|CrossRefFullText|GoogleScholar 150.YinH,SongCQ,SureshS,KwanSY,WuQ,WalshS,etal.PartialDNA-guidedCas9enablesgenomeeditingwithreducedoff-targetactivity.NatChemBiol(2018)14:311–6.doi:10.1038/nchembio.2559 PubMedAbstract|CrossRefFullText|GoogleScholar 151.ZischewskiJ,FischerR,BortesiL.Detectionofon-targetandoff-targetmutationsgeneratedbyCRISPR/Cas9andothersequence-specificnucleases.BiotechnolAdv(2017)35:95–104.doi:10.1016/j.biotechadv.2016.12.003 PubMedAbstract|CrossRefFullText|GoogleScholar 152.DahlmanJE,AbudayyehOO,JoungJ,GootenbergJS,ZhangF,KonermannS.OrthogonalgeneknockoutandactivationwithacatalyticallyactiveCas9nuclease.NatBiotechnol(2015)33:1159–61.doi:10.1038/nbt.3390 PubMedAbstract|CrossRefFullText|GoogleScholar 153.KianiS,ChavezA,TuttleM,HallRN,ChariR,Ter-OvanesyanD,etal.Cas9gRNAengineeringforgenomeediting,activationandrepression.NatMethods(2015)12:1051–4.doi:10.1038/nmeth.3580 PubMedAbstract|CrossRefFullText|GoogleScholar 154.KleinstiverBP,PrewMS,TsaiSQ,NguyenNT,TopkarVV,ZhengZ,etal.BroadeningthetargetingrangeofStaphylococcusaureusCRISPR-Cas9bymodifyingPAMrecognition.NatBiotechnol(2015)33:1293–8.doi:10.1038/nbt.3404 PubMedAbstract|CrossRefFullText|GoogleScholar Keywords:transgenicmice,geneticallyengineeredmousemodels,patient-derivedxenograftmodels,humanizedmousemodels,CRISPR/Cas9,non-germlinegeneticallyengineeredmousemodels Citation:LamprehtTratarU,HorvatSandCemazarM(2018)TransgenicMouseModelsinCancerResearch.Front.Oncol.8:268.doi:10.3389/fonc.2018.00268 Received:18April2018;Accepted:29June2018;Published:20July2018 Editedby: MichaelBreitenbach,UniversityofSalzburg,Austria Reviewedby: MartinHolcmann,MedizinischeUniversitätWien,AustriaReinhardUllmann,UniversitätUlm,Germany Copyright:©2018LamprehtTratar,HorvatandCemazar.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CCBY).Theuse,distributionorreproductioninotherforumsispermitted,providedtheoriginalauthor(s)andthecopyrightowner(s)arecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.Nouse,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms. *Correspondence:MajaCemazar,[email protected] COMMENTARY ORIGINALARTICLE Peoplealsolookedat SuggestaResearchTopic>



請為這篇文章評分?