A guide to cancer immunotherapy: from T cell basic science to ...
文章推薦指數: 80 %
Cancer immunotherapy has now revolutionized the field of oncology by prolonging survival of patients with rapidly fatal cancers. The number of ... Skiptomaincontent Thankyouforvisitingnature.com.YouareusingabrowserversionwithlimitedsupportforCSS.Toobtain thebestexperience,werecommendyouuseamoreuptodatebrowser(orturnoffcompatibilitymodein InternetExplorer).Inthemeantime,toensurecontinuedsupport,wearedisplayingthesitewithoutstyles andJavaScript. Advertisement nature naturereviewsimmunology reviewarticles article Aguidetocancerimmunotherapy:fromTcellbasicsciencetoclinicalpractice DownloadPDF DownloadPDF Subjects CancerimmunotherapyDrugdiscoveryImmunology AbstractTheTlymphocyte,especiallyitscapacityforantigen-directedcytotoxicity,hasbecomeacentralfocusforengagingtheimmunesysteminthefightagainstcancer.BasicsciencediscoverieselucidatingthemolecularandcellularbiologyoftheTcellhaveledtonewstrategiesinthisfight,includingcheckpointblockade,adoptivecellulartherapyandcancervaccinology.Thisareaofimmunologicalresearchhasbeenhighlyactiveforthepast50yearsandisnowenjoyingunprecedentedbench-to-bedsideclinicalsuccess.Here,weprovideacomprehensivehistoricalandbiologicalperspectiveregardingtheadventandclinicalimplementationofcancerimmunotherapeutics,withanemphasisonthefundamentalimportanceofTlymphocyteregulation.Wehighlightclinicaltrialsthatdemonstratetherapeuticefficacyandtoxicitiesassociatedwitheachclassofdrug.Finally,wesummarizeemergingtherapiesandemphasizetheyettobeelucidatedquestionsandfuturepromisewithinthefieldofcancerimmunotherapy. IntroductionTheideatodeploytheimmunesystemasatooltotreatneoplasticdiseaseoriginatedinthenineteenthcentury1.WilhelmBuschandFriedrichFehleisenwerethefirsttodescribeanepidemiologicalassociationbetweenimmunestatusandcancer.Theynoticedspontaneousregressionoftumoursfollowingthedevelopmentoferysipelas,asuperficialskininfectionmostcommonlycausedbyStreptococcuspyogenes1.Later,WilliamColey,oftencalledthe‘FatherofCancerImmunotherapy’,retrospectivelydemonstratedthaterysipelaswasassociatedwithabetteroutcomeinpatientswithsarcoma2.Withhopesofprospectivelyverifyinghisepidemiologicalevidence,Coleytreatedpatientswithcancerwithextractsofheat-inactivatedS.pyogenesandSerratiamarcescenstoboostimmunity3.Thisextract,termed‘Coley’stoxins’,possessedpotentimmunostimulatorypropertiesandachievedfavourableresponsesinvariouscancers2.However,lackofscientificrigourandreproducibility,inconcertwiththediscoveryofradiotherapyandchemotherapeuticagents,preventedtreatmentwith‘Coley’stoxins’frombecomingstandardpractice1.Theconceptofcancerimmunotherapyresurfacedinthetwentiethcenturyandmadesignificantheadwaywiththeadventofnewtechnology.In1909,PaulEhrlichhypothesizedthatthehumanbodyconstantlygeneratesneoplasticcellsthatareeradicatedbytheimmunesystem3.LewisThomasandSirFrankMacfarlaneBurnetindependentlyconceivedthe‘cancerimmunosurveillance’hypothesis,statingthattumour-associatedneoantigensarerecognizedandtargetedbytheimmunesystemtopreventcarcinogenesisinamannersimilartograftrejection1.Productiveimmuneresponsesfollowingtumouraladoptivetransferinmice4andclinicalreportsofspontaneousregressionofmelanomainpatientswithconcomitantautoimmunedisease5providedadditionalevidencesupportingthishypothesis,althoughaunifyingmechanismwaselusive.Theadventofknockoutmousemodelsprovidedthenecessarytechnologytoexperimentallydemonstratealinkbetweenimmunodeficiencyandcancer6.Additionalmolecularandbiochemicaladvancesledtotheidentificationoftumour-specificimmuneresponses7.Thisprovidedunequivocalevidencethattheimmunesystem,inparticularTcells(seeBox 1andFig. 1),wascapableofwagingwaroncancertissue7.Cancerimmunotherapyhasnowrevolutionizedthefieldofoncologybyprolongingsurvivalofpatientswithrapidlyfatalcancers.Thenumberofpatientseligibleforimmune-basedcancertreatmentscontinuestoskyrocketasthesetherapiespositionthemselvesasthefirstlineformanycancerindications.Noveltreatmentcombinationsandnewlyidentifieddruggabletargetswillonlyexpandtheroleofimmunotherapyinthetreatmentofcancerinthedecadestocome.Fig.1:PeripheralTcellfatesafterantigenicactivation.RestingTcellsbecomeactivatedafterstimulationbycognateantigeninthecontextofanantigen-presentingcellandco-stimulatorysignals.ActivatedTcellsproduceandconsumeproliferative/survivalcytokines,forexample,IL-2,IL-4andIL-7,andbegintoexpandinnumber.IfCD4+CD25+regulatoryT(Treg)cellsarepresent,theycandeprivethecyclingTcellsofproliferative/survivalcytokines,especiallyIL-2,causingthemtoundergoapoptosis.Oncecellsareproliferatingrapidly,theyhavedifferentfatesdependingontheirenvironment.Iftheyreceiveacutestrongantigenicstimulation,especiallyifitisencounteredrepeatedly,thecellswillundergorestimulation-inducedcelldeath.Bycontrast,iftheyreceivechronicweakantigenicstimulation,thecellswillsurvivebutbecomereprogrammedintoaspecificunresponsivetranscriptionalstateknownas‘Tcellexhaustion’.Finally,astheantigenandcytokinestimulationdiminishesastheimmuneresponsewanes,usuallyoncethepathogenhasbeencleared,cytokinewithdrawalcanoccurpassivelytocontracttheexpandedpopulationofantigen-specificTcells.Asmallfractionofcellswillbereprogrammedtoentera‘memory’phenotype,andthisdifferentiationstepisfacilitatedbyIL-7andIL-15.MemoryTcellswillcontinuetopersistintheimmunesystemandformthebasisofanamnesticresponses.Intheseregulatoryprocesses,Tcelldeathusuallytakestheformofapoptosis.FullsizeimageInthisReview,weemphasizetheroleofTcellsinmoderncancerimmunotherapiesanddiscussthreedifferentcategoriesofimmunotherapeuticapproachestotreatcancer:immunecheckpointblockade,anapproachthatisdesignedto‘unleash’powerfulTcellresponses;adoptivecellulartherapies,whicharebasedontheinfusionoftumour-fightingimmunecellsintothebody;andcancervaccines,whichcanbedesignedtohaveeitherprophylacticortherapeuticactivity.Finally,weintroducesomeoftheemergingtargetsandapproachesincancerimmunotherapy.Box1Tcellfunction,development,activationandfateThe1960srepresentedaperiodofenlightenmentwithinthefieldofimmunologybecausetwomajorsubtypesoflymphocytes,BlymphocytesandTlymphocytes,werecharacterized264,265.Thiswasrecognizedbythe2019LaskerAwardforBasicScience,awardedforthepioneeringworkbyJacquesA.F.P.MillerandMaxDaleCooperthatdefinedthekeyrolesofTcellsandBcellsinadaptiveimmunity.Bcellsrecognizecirculatingantigeninitsnativeformandrespondbysecretingprotectiveantibodies266.Bycontrast,Tcellsrecognizepeptideantigens,derivedfromproteinsdegradedintracellularly,thatareloadedontocellsurfaceMHCmolecules,aprocesscalledantigenpresentation.TwobroadclassesofTcellsthathavedistincteffectormechanismsaredelineatedbytheexpressionofeithertheCD4orCD8co-receptor:CD4+TcellsdetectantigeninthecontextofMHCclassIImoleculesandorchestratetheadaptivearmoftheimmunesystembyproducingcytokineswithchemotactic,pro-inflammatoryandimmunoprotectiveproperties267.AtleastoneCD4+Tcellsubclass,CD4+CD25+regulatoryTcells,dampenstheimmuneresponsefollowingchallenge268.CD8+TcellsdetectantigeninthecontextofMHCclassImoleculesandcarryoutdirectcytotoxicreactionsthatkillinfectedorneoplasticcells269.Auniqueclone-specificcellsurfaceproteincomplex,theTcellreceptor(TCR),specificallyrecognizesantigensandparticipatesinthedevelopmentalselectionofTcellsthatcanrecognizepathogensbutareself-tolerant270.TheTCRcomplexcompriseshighlypolymorphicsingleα-andβ-glycoproteinchains(asmallTcellpopulationharboursγ-andδ-chainsinstead)thatcontainvariableandconstantregions,akintoimmunoglobulins,andagroupofnon-polymorphicsignallingchains,calledCD3γ,δ,εandζ.AvastrepertoireofTcellclonotypeswithuniquespecificitiesisgeneratedthroughrearrangementofα-andβ-chaingenesegmentswithinthegenomeofeachTcell271.Followingclonotypeproduction,positiveandnegativethymicselectionfunctionstoentraina‘tolerant’immunesystem,onethatefficientlyrespondstopathogensorcancercellsbutgenerallyignoresor‘tolerates’self-tissuesasnon-immunogenic269,270.AntigenstimulationoftheTCRisnecessaryforTcellactivationandproliferation,butanadditionalsignal,termedco-stimulation,isrequiredforphosphorylationeventscrucialforearlysignaltransduction272.Thenon-polymorphicsurfaceproteinCD28anditsfamilymembersarethemostpotentco-stimulatoryreceptorsonTcells,aselegantlydemonstratedbythesynergismofanti-CD28stimulatoryantibodiesandTCRengagementonTcellactivationandproliferation273,274.AdditionalevidencewasprovidedbystudiesdemonstratingtheefficientinhibitionofTcellactivationandproliferationbyinhibitoryanti-CD28antibodies275,276,277,278.TheligandsforCD28,B7-1andB7-2,areexpressedonantigen-presentingcellsandareupregulatedwhenthesecellsencountermicroorganismsthatactivateToll-likereceptorsorotherpathogensensors279,280.Inhibitorymolecules,includingcytotoxicTlymphocyte-associatedprotein4(CTLA4)andprogrammedcelldeath1(PD1),areinducedduringimmuneresponsesandrepresenta‘checkpoint’todampenTcellhyperactivation281(seeFig. 2).ThepolymorphicTCRsignalsthroughacomplexofthreesetsofdimericCD3chains,ε–δ,γ–δandζ–ζ282.TheintracellularportionsoftheCD3chainscontainimmunoreceptortyrosine-basedactivationmotifsthatarephosphorylatedbylymphocyte-specificproteinkinase(LCK),aSRCfamilykinase283.Atrest,thesurfacesignallingproteinCD45exhibitsphosphataseactivitythatblocksLCKfunction284.Followingactivation,CD45removesaninhibitoryphosphateonLCK,permittingphosphorylationofζchain-associatedproteinkinase70(ZAP70),aSYKkinasefamilymemberthatbindstoimmunoreceptortyrosine-basedactivationmotifsintheCD3ζ-chainandrecruitsthelinkerforactivationofTcells(LAT)andphospholipaseCγ1(PLCγ)285.Withampleco-stimulation,downstreamsignallingaffectscalciumrelease,theactivationoftheGTPaseRASandtranscriptionalreprogrammingessentialforactivatedTcellfunction286.Followingactivation,circulatingnaiveTcellshavethreemajorfatesintheperiphery(Fig. 1).First,theeffectorTcellpopulationcancontractthroughapoptosisastheimmuneresponseresolves(cytokinewithdrawal)orfollowingrepeatedhigh-dosestimulation(restimulation-inducedcelldeath)287,288,289.Tcellscanalsoexhibitanexhaustedphenotypeinducedbyrepeatedlow-doseandlow-affinitystimulation,asseeninchronicinfectionsandneoplasticprocesses88.Lastly,asubsetoftheseeffectorcellsareinvolvedinlong-termimmunologicalmemory.MemoryTcellsareprimedtoreactmorevigorouslytothesameantigenduringasubsequentencounter,makingthemcriticalmediatorsofimmunerecallresponsestopathogensandtumours290.Leveragingthepoweroftechnologicaladvancesinmolecularbiology,recentsingle-cellRNAsequencingandepigenomicstudieshaveprovidedadditionalmolecularinsightintoTcellfatesandthecorrespondingfeaturesofimmunotherapy-responsiveTcells.Thesestudiescollectivelyimplicatethatcomplextranscriptomic,epigenomicandclonotypicchangesoftumour-infiltratingTcellsdeterminethesuccessofimmunotherapy291,292,293,294.ImmunecheckpointtherapySeveralevolutionarilyconservednegativeregulatorsofTcellactivationactas‘checkpointmolecules’tofine-tunetheimmuneresponseandregulatehyperactivation.CytotoxicTlymphocyteantigen4(CTLA4)andprogrammedcelldeath1(PD1)arethemostpotentexamplesofTcellimmunecheckpointmolecules.TheyexerttheirbiologicaleffectatdistinctbodysitesandtimesduringtheTcelllifespan8.Therefore,theycomplementeachotherfunctionallyandensurethatTcellresponsespreserveself-tolerancewhileeffectivelyprotectingthebodyfrompathogensandneoplasia.CTLA4andPD1havebeensuccessfullytargetedbyseveralpioneeringresearchgroupsastreatmentsforawidevarietyofrecalcitrantcancers,researchthatultimatelyearnedJamesP.AllisonandTasukuHonjothe2018NobelPrizeinPhysiologyorMedicine.CTLA4biologicalfunctionAfterthediscoveryofTcellco-stimulationmediatedbythesurfaceproteinCD28(Box 1),thesearchforadditionalimmuneregulatorsledtotheidentificationofCTLA4,areceptorwithstructuralandbiochemicalsimilaritiestoCD28,asanewimmunoglobulinsuperfamilymember9,10.TheCTLA4andCD28genesarefoundinthesameregionofchromosome2(2q33.2)andareselectivelyexpressedinthehaematopoieticcompartment11.However,incontrasttothehighlevelsofbasalCD28expressiononconventionalTcells,CTLA4isexpressedatalowbasallevelandisstronglyinducedfollowingantigenactivation.Interestingly,CD4+CD25+regulatoryT(Treg)cells,whichhaveanimmunosuppressivefunction,expressCTLA4constitutively.Structurally,bothCTLA4andCD28formmembrane-boundhomodimerscomprisinganextracellularimmunoglobulin-likedomain,atransmembraneregionandacytoplasmictailcapableofrecruitingsignallingproteinsandcontrollingsurfaceexpression10,12,13.ThetraffickingofCTLA4-containingvesiclestothecellsurfaceafteractivationiscontrolledbyaphysicalinteractionwiththelipopolysaccharide-responsiveandbeige-likeanchorprotein(LRBA)13.ThesequencesimilaritybetweenCTLA4andCD28ishighestwithintheirextracellularbindingdomainandtheythereforebindtothesameligands,calledB7-1(alsoknownasCD80)andB7-2(alsoknownasCD86),whichareexpressedbyantigen-presentingcells(APCs;Box 1).However,CTLA4hasgreateraffinityandaviditythanCD28forB7ligands,representingakeydifferenceintheirbiology14,15,16.Withfurthercharacterization,itbecameclearthatCD28andCTLA4hadoppositeimmunoregulatoryfunctions.Forexample,solubleCTLA4wasshowntoinhibittheproliferationofTcellsco-culturedwithB7-expressingAPCsbecauseitinterferedwiththeCD28–B7interaction14.Tcellreceptor(TCR)signallingstudiesunequivocallydemonstratedthatCTLA4inhibitsTcellactivationandproliferation12,17,18.ThenegativetolerogenicroleofCTLA4wasalsoevidentinvivo,becauseCtla4-knockoutmicedevelopedacharacteristicTcell-mediatedlymphoproliferativeautoimmunedisease19.TheabsenceofCtla4wassufficienttocausethisphenotype,astreatmentwithanengineeredsolubleversionofaCTLA4:Fcfusionprotein(CTLA4Ig)andgeneticcrossestoB7-deficientmiceameliorateddisease20,21.TheautoimmunelymphoproliferativedisordercausedbyCtla4lossdependsontheactivityofCD28becausemutationofanLCK-bindingcarboxy-terminalprolinemotifintheintracellulartailofCD28abrogatesdiseaseinmousemodels22.Moreover,humanpatientswithCTLA4haploinsufficiencyexhibitsimilarseveremultiorganlymphocyticinfiltrationandautoimmunity(CHAIdisease)thatcanbetreatedwithabatacept,anFDA-approvedCTLA4Ig23,24.CTLA4restrainsTcellactivationthroughmultiplemechanisms:bydirectlyantagonizingCD28,bycompetingforco-stimulatoryligands,bypreventingimmuneconjugateformationandbyrecruitinginhibitoryeffectors25(Fig. 2).TodirectlyopposeCD28activity,intracellularvesiclesreleaseCTLA4attheimmunologicalsynapsewhereitassociateswiththeTCR26.Inthecontextoftheimmunologicalsynapse,CTLA4canalsoreorganizethecytoskeletonanddisturbTcell–APCimmuneconjugateformation27.CTLA4alsomediatestheinternalizationofitsligands,therebypreventingtheirbindingtoCD28,which,inturn,reducesIL-2secretionandTcellproliferation17,28,29.Lastly,phosphatases,includingSH2domain-containingtyrosinephosphatase2(SHP2)andproteinphosphatase2A(PP2A),arerecruitedandinteractwiththecytoplasmictailofCTLA4,therebycontributingtoitsnegativeeffectonTcellactivation.SHP2isaninhibitorofphosphorylationoftheCD3ζ-subunitoftheTCRandalsoinhibitsphosphorylationoftheadaptorproteinlinkerofactivatedTcells(LAT)30,31.PP2Aishypothesizedtoinhibitextracellularsignal-regulatedkinase(ERK),akinasethatactsasasignallingproteindownstreamoftheTCR32.However,thereissignificantdebateaboutwhichofthemoleculesthatassociatewiththecytoplasmictailofCTLA4aremostimportantforinhibitingTcellactivity.Nevertheless,theseinhibitorysignalsreducetheactivationoftranscriptionfactors,suchasactivatorprotein1(AP-1),nuclearfactor-κB(NF-κB)andnuclearfactorofactivatedTcells(NFAT),whichreprogrammesTcellstowardsananergicfate29,33.Fig.2:MechanismsofTcellactivationandregulation.Beforeactivation,antigen-presentingcells(APCs)loadantigenontoMHCmoleculestoprepareforcontactwithaTcellthatdisplaysacognateTcellreceptor(TCR)whilealsoprovidingnecessaryco-stimulatoryligandsB7-1andB7-2.TheinhibitorymoleculecytotoxicTlymphocyteantigen4(CTLA4)iscontainedwithinintracellularvesiclesinnaiveTcells,whereasitisconstitutivelyexpressedonthecellsurfaceofCD4+CD25+regulatoryT(Treg)cells.BothclassesofTcellsexpresstheco-stimulatoryreceptorCD28.Earlyafteractivation,generallyinthelymphoidtissue,TcellsareactivatedwhentheirTCRsbindtotheircognateantigenpresentedbyAPCsinconjunctionwithCD28bindingtoB7-1/B7-2.Also,theactivatedTcellsbegintheprocessofdisplayingCTLA4onthecellsurface.TcellswithinperipheraltissuesupregulatePD1atthemRNAlevelearlyafteractivation.Lateafteractivation,inlymphoidtissue,CTLA4expressedbyactivatedTcellsbindstotheB7-1andB7-2moleculesonAPCs,therebypreventingtheirbindingtoCD28andpromotinganergybydecreasingtheTcellactivationstate.Atthesametime,constitutiveexpressionofCTLA4onTregcellsleadstotrans-endocytosisofB7ligandsandinterfereswiththeCD28co-stimulatoryabilityofAPCs.Lateafteractivationinperipheraltissues,PD1isfurtherupregulatedtranscriptionally,leadingtogreatersurfaceexpressionofprogrammedcelldeath1(PD1),whichbindstoitsligandsPDL1andPDL2,therebypromotingTcellexhaustionatsitesofinfectionorwhenconfrontedwithneoplasms.ImagecourtesyoftheNationalInstituteofAllergyandInfectiousDiseases.FullsizeimageBeyonditsfunctioninactivatedconventionalTcells,CTLA4expressiononTregcellsisessentialforthedirectandindirectimmunosuppressiveactivityofthesecells34,35.InvitrostudiesshowedthatCTLA4wasnecessaryforanti-inflammatorycytokinereleasebyTregcells,whichreducespolyclonalactivationandproliferationofconventionalTcellsnearby36,37.ThisresultwasconfirmedinvivobyadoptivetransferofCTLA4-bearingTregcellstopreventautoimmunityinducedbyCTLA4-deficientTcellsthathadbeentransferredtoTcell-andBcell-deficientmice(Rag–/–mice)38,39.Thistreatmenteffectwasnullifiedbyantibody-mediatedneutralizationofCTLA4(refs38,40,41).Thus,Tregcell-expressedCTLA4cancompensateforlackofCTLA4expressionbyconventionalTcells42,43.Beyonddirectimmunosuppression,TregcellsalsoprimedendriticcellstoinduceanergyofconventionalTcellsinaCTLA4-dependentfashionbybindingtoB7ligandsonAPCs,followedbyinternalizinganddegradingthem,aprocesstermedtrans-endocytosis28,44.CTLA4blockadeincancerTherecognitionofCTLA4asanegativeregulatorofTcellactivationgaverisetotheideathatblockingitsactionscouldunleashatherapeuticresponseofTcellsagainstcancer45(Fig. 3).JamesAllisonandcolleaguesfirsttestedthisideaanddemonstratedthatneutralizinganti-CTLA4antibodiesenhancedantitumouralimmunityinmiceagainsttransplantedandestablishedcoloncarcinomaandfibrosarcoma46.Inaddition,duringrechallenge,animalstreatedwithanti-CTLA4wereabletorapidlyeliminatetumourcellsthroughimmunemechanisms,providingevidencethatblockingofCTLA4induceslong-lastingimmunologicalmemory46,47.AlthoughCTLA4-targetedmonotherapywasshowntoconferbenefitinanimalmodelsofbrain48,ovarian49,bladder50,colon46,prostate47andsofttissue46cancers,lessimmunogeniccancers,includingSM1mammarycarcinoma51andB16melanoma52,didnotrespondasfavourably.Furthermore,heterogeneitybetweencancermodelsyieldeddiscordanttissue-specificresults45,53.Inaddition,agreatertumourburdencorrelatedwithreducedtumourresponsestoanti-CTLA4treatmentbecauselargertumoursfosteramorerobustanti-inflammatorytumourmicroenvironment45,49.Fig.3:EffectsofCTLA4-blockingantibodies.CytotoxicTlymphocyteantigen4(CTLA4)-blockingantibodies(α-CTLA4),especiallywhenboundtoanFcreceptor(FcR)onanantigen-presentingcell(APC),canpromoteantibody-dependentcellularcytotoxicity(ADCC).CD4+CD25+regulatoryT(Treg)cellsexpresshigheramountsofCTLA4thanconventionalTcellsandarethereforemorepronetoα-CTLA4-inducedADCCthanconventionalTcells.Inaddition,α-CTLA4canbindtoCTLA4onthesurfaceoftheTregcellandpreventitfromcounter-regulatingtheCD28-mediatedco-stimulatorypathwaysthatareplayingaroleinTcellactivation.Atthesametime,α-CTLA4canalsopromoteTcellresponsesbyblockingCTLA4onthesurfaceofconventionalTcellsastheyundergoactivation.TCR,Tcellreceptor.Adaptedfrom©2019Fritz,J.M.&Lenardo,M.J.OriginallypublishedinJ.Exp.Med.https://doi.org/10.1084/jem.20182395(ref.135).FullsizeimageDespitethemixedsuccessinpreclinicalstudies,mAbstargetingCTLA4provedeffectiveinclinicaltrialsofmelanoma45.Ipilimumab,ahumanIgG1κanti-CTLA4mAb,gainedFDAapprovalin2011fornon-resectablestageIII/IVmelanomafollowingevidencethatitelicitedpotenttumournecrosis54andconferreda3.6-monthshort-termsurvivalbenefit55.Long-termsurvivaldatademonstratedthat22%ofpatientswithadvancedmelanomatreatedwithipilimumabbenefitedfromanadditional3yearsormoreoflife56.Additionallong-termstudieshavedemonstratedthedurabilityofthissurvivalbenefit,indicatingthepersistenceofantitumouralimmunityfollowingCTLA4blockade56,57.Unfortunately,trialresultsinrenalcellcarcinoma58,non-small-celllungcancer59,small-celllungcancer60andprostatecancer61haveyieldedlessimpressiveeffectsthanthoseseeninpatientswithmelanoma.Tremelimumab,anIgG2isotypeformofaCTLA4-blockingantibody,hasyettoreceiveFDAapprovalasitdidnotincreasesurvivalinadvancedmelanoma62.Itishypothesizedthateffectivenessvariesbetweenipilimumabandtremelimumabowingtodifferencesinbindingkineticsandthecapacitytomediateantibody-dependentcell-mediatedcytotoxicity63,64.ThemechanismsofCTLA4-mediatedtumourregressionarepleiotropicbutunifiedbytheactionofonecelltype,theTlymphocyte(Fig. 3).TcellresponsesarenecessaryforthetherapeuticeffectsofCTLA4-targetedagentsbecauseTcelldepletioninanimalmodelsabolishestumoricidalactivity65.InhibitionofCTLA4enhancesTcellclonalresponsestotumour-associatedneoantigensandahighneoantigenburdenportendsafavourableresponsetoanti-CTLA4therapy66,67.ApartfromboostingeffectorTcellresponses,anti-CTLA4therapydepleteslocalintratumouralTregcellsthroughantibody-dependentcell-mediatedcytotoxicityinmousemodelsandshiftsthebalanceofthetumourmicroenvironmentawayfromimmunosuppression68,69.Thisphenomenonrequiresfurtherstudyinhumancancerascurrentdataareinconclusive70,71.TherelativeroleofeffectorTcellsandTregcellsinconferringaclinicalbenefithasbeencontested,althoughspecificblockingofCTLA4inbothcellpopulationscanleadtosynergisticincreasesintumourregression69.Overall,currentdatasuggestthatthemostcriticalfactorinpredictingoutcomeistheratioofeffectorTcellstoTregcellsinfiltratingthetumour45,49.PD1/PDL1biologicalfunctionPD1wasfirstidentifiedin1992asaputativemediatorofapoptosis,althoughlaterevidencesuggestedaroleinrestrainingimmunesystemhyperactivation,analogoustoCTLA4(ref.72).Asatype1transmembraneglycoproteinwithintheimmunoglobulinsuperfamily,PD1exhibitsa20%and15%aminoacididentitytoCTLA4andCD28,respectively73.HumanPD1isexpressedonTcellsafterTCRstimulationandbindstheB7homologuesPDL1(alsoknownasB7-H1)andPDL2(alsoknownasB7-DC),whicharepresentconstitutivelyonAPCsandcanbeinducedinnon-haematopoietictissuesbypro-inflammatorycytokines74,75,76.Inthisreview,werefertoPD1anditsligandsasthe‘PD1axis’.ThepredominantroleofthePD1axisinthenegativeregulationofTcellactivationbecameclearin1999whenlossofthemousePD1orthologue,Pdcd1,wasfoundtocauseautoimmunityinvivo.C57BL/6micelackingfunctionalPD1proteindevelopedsplenomegaly77.AgeingoftheseanimalsledtomildTcell-mediatedlupus-likeglomerulonephritisandarthritisthatwasexacerbatedbyconcurrentlprmutationsintheFasgene78.CharacterizationofadditionalmousestrainsshowedthatPdcd1–/–miceoftheBALB/cstrainexhibitedcardiacinflammationleadingtodilatedcardiomyopathy79.Bycomparison,non-obesediabeticPdcd1–/–micehadacceleratedtype1diabetesmellituscomparedwiththeirPdcd1-sufficientcounterparts80.Theheterogeneousandlate-onsetautoimmunephenotypesofPdcd1–/–miceweredistinctfromCtla4–/–animals,demonstratingthatthePD1axisregulatesTcellbiologydifferentlytoCTLA4.Spatially,CTLA4exertsitsregulatoryeffectpredominantlywithinlymphoidorgans,whereasPD1tendstowardstemperingTcellactivationlocallywithinperipheraltissues8.Temporally,PD1actslaterinthecourseofTcellactivationandfatedetermination.Overall,thePD1axisplaysauniqueroleinmaintainingTcelltolerancetoself.PD1restrainsimmuneresponsesprimarilythroughinhibitoryintracellularsignallingineffectorTcellsandTregcells81.Theimmunoreceptortyrosine-basedswitchmotifandtheimmunoreceptortyrosine-basedinhibitorymotifofPD1arephosphorylatedandrecruitthephosphatasesSHP1andSHP2,whichdephosphorylate,andtherebyinactivate,downstreameffectors(thatis,theCD3ζ-subunitandZAP70)thatareimportantforearlyTcellactivation76andCD28signalling82.BothCTLA4andPD1inhibitproteinkinaseB(PKB;alsoknownasAKT)signallingtoreduceglucoseuptakeandutilization,theformerthroughPP2Aandthelatterbyreducingphosphoinositide3-kinase(PI3K)activity83.IncontrasttoCTLA4,thePD1axisisessentialforcontrollingthecontinuedactivationandproliferationofdifferentiatedeffectors;whenPD1engagesitsligands,itcaninduceastateofTcelldysfunctioncalledTcellexhaustion84,85,86.However,whatdetermineswhetherPD1mediatesexhaustionorapoptosisincertaincontextsisstillanactiveareaofresearch.OnemodelsuggeststhattheinteractionbetweenPI3KsignallingandthemitochondrialBcelllymphoma-extralarge(BCL-XL)proteinisacriticalcontrolpointatwhichPD1-mediatedP13KinhibitionreducesBCL-XLandpromotesapoptosis25,83.BeyondregulatingconventionalTcells,PDL1onAPCscancontrolTregcelldifferentiationandsuppressiveactivity87.Unfortunately,tumourcellscanexploitthismechanismbyupregulatingPD1ligandstoinduceTcellexhaustionandgenerateatumourmicroenvironmentthatfacilitatestumourgrowthandinvasion88.PD1/PDL1blockadeincancerOncethePD1axiswasimplicatedinthenegativeregulationofTcells,preclinicalworkexaminedwhetherinhibitorsofthispathwaycouldbeusedforcancertreatmentandbiomarkerdiscovery.First,overexpressionofPDL1orPDL2incancercelllineswasfoundtoconstraintheCD8+Tcellcytotoxicantitumourresponse,whereastumourswererejectedinmicewithoutfunctionalPD1(refs89,90).Second,blockadeofPD1suppressedthegrowthoftransplantedmyelomacellsinsyngeneicanimals90.Conversely,transplantedcellsoverexpressingPDL1orPDL2insyngeneicmiceallowedforincreasedtumourcolonization,burdenandinvasiveness90.NeutralizingthePD1axisusingmAbs89,91orsecretedPD1extracellulardomains92reversedtheseeffectsandenhancedTcellcytotoxicitytowardstumourcells90(Fig. 4).RescuingCD8+TcellcytotoxicitybyPD1blockadedependsontheexpressionofCD28asPD1-mediatedimmunomodulationislostinthecontextofCTLA4Ig,B7blockadeorCD28conditional-knockoutmice92.Inaddition,reinvigoratedTcellsintheperipheralbloodofpatientswithlungcancerfollowingPD1blockadewereshowntoexpressCD28(ref.93).PD1inhibitionnotonlyaugmentsantitumouralimmunitybutalsolimitshaematogenousseedingofB16melanomaandCT26coloncarcinomametastasesinmousemodels94.Thus,PD1/PDL1blockadecanbothenhancetumourcytolysisandlimitmetastasis.ApartfromaroleofPD1anditsligandsincancertreatment,multiplestudieshavealsoshownanegativecorrelationbetweenhumantumourexpressionofproteinsinvolvedinthePD1axisandprognosis,indicatingtheutilityoftheseproteinsaspotentialbiomarkers95,96,97.Fig.4:MechanismsofPD1axisinhibition.ActivatedTcellsexpressprogrammedcelldeath1(PD1),whichengageswithitsspecificligand(PDL1orPDL2)todampenactivation.BlockingofthePD1axisthroughtheadministrationofananti-PD1(oranti-PDL1oranti-PDL2)antibodypreventsthisinhibitoryinteractionandunleashesantitumouralTlymphocyteactivitybypromotingincreasedTcellactivationandproliferation,byenhancingtheireffectorfunctionsandbysupportingtheformationofmemorycells.Consequently,moreTcellsbindtotumourantigenspresentedontumourcellsbyMHCmoleculesviatheirTcellreceptors(TCRs).Thisultimatelyleadstothereleaseofcytolyticmediators,suchasperforinandgranzyme,causingenhancedtumourkilling.APC,antigen-presentingcell.Adaptedfrom©2019Fritz,J.M.&Lenardo,M.J.OriginallypublishedinJ.Exp.Med.https://doi.org/10.1084/jem.20182395(ref.135).FullsizeimageFollowingpreclinicalsuccess,mAbsdesignedtocounteractnegativeimmunoregulationbythePD1axisweredevelopedandefficacywasshowninclinicaltrials98.DevelopmentwasinitiatedbyMedarex(ultimatelypurchasedbyBristol-MyersSquibb)in2001(ref.99).In2010,aphaseItrialdemonstratedthatPD1blockadewaswelltoleratedandcouldpromoteantitumouralresponses100.In2014,thehumanizedandfullyhumananti-PD1mAbspembrolizumabandnivolumab(bothIgG4)becamethefirstFDA-approvedPD1-targetedtherapeuticsforrefractoryandunresectablemelanoma101,102,103,104.Inahead-to-headcomparison,pembrolizumabshowedbetter6-monthprogression-freesurvivalthanipilimumabandconferredanoverallsurvivalbenefit105,106.Clinicaltrialsofnivolumabdemonstratedanoverallsurvivalof72.9%at1yearcomparedwith42.1%survivalinthegroupofpatientstreatedwiththechemotherapeuticdacarbazine104.In2015,pembrolizumabwasapprovedforthetreatmentofPDL1-expressingnon-small-celllungcarcinomabecauseitprovideda4.3-monthincreaseinprogression-freesurvivalcomparedwithplatinum-basedchemotherapeuticsandwasmoreeffectivethanthechemotherapeuticpaclitaxel107,108.IncreasedPDL1expressiononthetargettumourwasassociatedwithimprovedresponsestoPD1axisblockade109.Additionalsuccessfulclinicaltrialsexpandedtheuseofpembrolizumabtoheadandnecksquamouscellcarcinoma110,Hodgkinlymphoma111,urothelialcarcinoma112,gastric/gastro-oesophagealjunctioncancer113andtissue-agnosticcarcinomawithahighdegreeofmicrosatelliteinstability114.Followingapprovalintissue-agnosticcancerswithmicrosatelliteinstability,pembrolizumabbecamethefirstdrugtobeapprovedbasedonamolecularbiomarkerratherthanbycancersite.However,theimmunosuppressivemicroenvironmentofdifferenttissuesmakesithardtopredictwhichpatientswillbenefit115,116.Similartoprembrolizumab,theuseofnivolumabhassincebeenextendedtorenalcellcarcinoma117,headandnecksquamouscellcarcinoma118,urothelialcarcinoma119,hepatocellularcarcinoma120,Hodgkinlymphoma121andcolorectalcancerwithahighdegreeofmicrosatelliteinstability122.Aswasseenwithanti-CTLA4therapy,long-termsurvivalanalysesdemonstratealong-lastingimmune-mediatedsurvivalbenefitfollowingPD1blockade123.However,thereasonwhyPD1blockadehasdemonstratedbroaderclinicalutilitythananti-CTLA4treatmenthasremainedelusive.ItishypothesizedthatthedifferencemaybebecausethePD1axisisfrequentlyco-optedbytumoursvialigandexpression,whereasCTLA4representsabroaderimmunoregulatorycircuit74,124.PDL1isalsotargetablebyspecificantibodiesthathaveproveneffectivetreatmentsinmultipleformsofcancer.In2016,thefirstPDL1-targetedhumanizedmAb,atezolizumab(anIgG4antibody),wasapprovedfortreatmentofurothelialcarcinoma.Anoverallresponserateof15%wasdeemedstatisticallysignificantbasedonhistoricalcontroldata,althoughresponsesweredependentontumourPDL1expressionstatus125.Unfortunately,additionaltrialdatahavenotdemonstratedthatatezolizumabhasclinicalefficacybeyondthestandardofcareinurothelialcarcinoma,althoughitislesstoxicthantraditionalchemotherapy126.Indicationshavesinceexpandedtoincludethetreatmentofnon-small-celllungcarcinoma127,triple-negativebreastcancer128andsmall-celllungcancer129.Additionalanti-PDL1humanmAbs,avelumabanddurvalumab,enteredthemarketin2017(ref.98).AvelumabisusedforthetreatmentofMerkelcellcarcinoma130,urothelialcarcinoma131andadvancedrenalcellcarcinoma132.Duvalumabisusedforurothelialcarcinoma133andnon-small-celllungcancer134.Therefore,similartoPD1,blockadeofPDL1hasbeeneffectiveindifficult-to-treatformsofcancer.AdverseeffectsofcheckpointblockadeBlockinganaturallyoccurringcentralimmunecheckpointunleashespowerfulimmuneeffectormechanismsthatmaynotrespectthenormalboundariesofimmunetolerancetoself-tissues135.Ctla4-andPdcd1-knockoutmiceprovidedaglimpseintothespectrumofautoimmuneresponsesthatoccurinhumansduringimmunecheckpointblockadetherapy19,77,78,79.Humanloss-of-functionmutationsinCTLA4anditsinteractingregulatoryprotein,LRBA,alsomirrortheimmune-relatedsideeffectsobservedwithanti-CTLA4therapy13,24.Onthebasisofameta-analysisoftrialdatasets,immune-relatedadverseeventsareestimatedtooccurin15–90%ofpatients55.Moresevereeventsrequiringinterventionareobservedin30%and15%ofpatientstreatedwithCTLA4andPD1axisinhibitors,respectively136.ThecommonimmunefeatureoftoxicityisthelossofnaiveTcellsandtheaccumulationofoveractivememoryTcellsthatinvadeperipheralorgans,suchasthegastrointestinaltractandlungs,andcauseinflammatorydamage.Keratinizedandnon-keratinizedmucosaappeartobethemostsusceptible,asapproximately68%and40%oftreatedpatientsexhibitpruritisandmucositis,respectively137,138.Anti-CTLA4therapycarriesanincreasedriskofsevereautoimmunecomplicationscomparedwiththerapiestargetingthePD1axis,aswasobservedinknockoutmiceandinclinicalstudies19,77,78,79,80,139.Inaddition,datafromdose-escalationtrialssupporttheclaimthatanti-CTLA4agentselicitdose-dependentresponsesnotseenwiththerapiestargetedatthePD1axis107,139.Toxicitiesaffectingthegastrointestinaltractandbrainaremorecommonwithanti-CTLA4therapy,whereaspatientstreatedwithPD1axis-targetedtherapiesareathigherriskofhypothyroidism,hepatoxicityandpneumonitis137.However,asthenumberofindicationstreatedwithcheckpointblockadeincreasesandmorepatientsaretreated,rarersideeffectsinawiderspectrumoforgansandheterogeneousresponseshavemanifested137.Forexample,hyperprogressionofdiseasehasbeenobservedinaminorityofpatientswithvarioustumourtypestreatedwithPD1inhibitors140,141,142.Mostrecently,itwasshownthatthePD1inhibitornivolumabcanleadtotherapidprogressionofdiseaseinpatientswithadultTcellleukaemia/lymphoma,providingevidenceforaroleoftumour-residentTregcellsinthepathogenesisofthislymphoma143.Multipleimmune-relatedresponsecriteriahavebeendevelopedtobettercategorizepatientresponsestocheckpointblockade.Inaddition,thesecriteriaaimtodistinguishprogressionfrompseudoprogression,aphenomenoninwhichpatientstreatedwithCTLA4orPD1inhibitorsexperienceaperiodofprogressionfollowedbyrapidtumourclearance144,145.Overall,checkpointblockadeleadstoautoimmunetoxicitieswithatherapy-specificpatternoforganinvolvement,aspredictedbythephenotypesofanimalsgeneticallydeficientforcheckpointmolecules.Interestingly,preclinicalimmunecheckpointtherapystudiesdidnotdemonstratemajoradverseeffectsinvivoand,thus,werenotgreatpredictorsofhumantoxicities146.Thisisthoughttobeduetotheshorttimeframeofthesestudiesandtheinbrednatureofmousestrains146.Recentlydevelopedhumanizedmousemodelsrepresentaplatformthatbetterrecapitulatessideeffectsduetocheckpointtherapy146,147.Nevertheless,toxicityassociatedwithimmunecheckpointblockadeistoleratedbetterthanthetoxicitiesassociatedwithtraditionalchemotherapeutics,makingthesetherapiesattractiveforqualityoflifereasonsbeyondtheirsurvivalbenefit98,148.Recentresearchhasaimedtoimprovetheside-effectprofilesandclinicalresponseofimmunecheckpointblockadethroughthemodificationofexistingantibodiesandtheengineeringofnoveldeliverymethods.ItwasrecentlyshownthatabnormalCTLA4recyclingandsubsequentlysosomaldegradationwasamechanismthatcontributestotoxicitiesandreduceddrugeffectiveness.ModifiedpH-sensitiveantibodiesthatdonotinterferewithLRBA-mediatedCTLA4recyclingwereshowntolimitadverseeventsandimproveclinicaloutcomesinestablishedtumoursinmousemodels,whichmayultimatelybroadenclinicalutility149,150.Additionalresearchhasfocusedondevelopingbiomaterialsforthelocalizedadministrationofcheckpointinhibitors151.Forexample,comparedwithsystemicdelivery,transdermalpatchdeliveryofanti-PD1antibodieswasbettertoleratedandunleashedamorerobustantitumouralresponseinamousemodelofmelanoma151.Abroadfieldofresearchiscurrentlyaimedatdiscoveringnovelmethodstoreducetoxicitiesassociatedwithcheckpointtherapyandtoincreaseclinicalbenefitinagreatervarietyoftumours.Clinicalmanagementofdrug-relatedtoxicitiesisthesameforallcheckpointdrugs,andtoxicitiesaregradedaccordingtothe2009NationalCancerInstituteCommonTerminologyCriteriaforAdverseEventsseverityscale137,152.Mild(grade1)toxicitiesarenottypicallytreated.Inthesettingofgrade2or3adverseevents,checkpointinhibitorsarediscontinueduntilsymptomsandlaboratory-valueabnormalitiesresolve.Glucocorticoidsarealsousedtoeffectivelycontrolimmunehyperactivity.Infliximabandotherimmunosuppressiveagentscanbeusedwhenglucocorticoidsfail.Life-threatening(grade4)toxicitiesnecessitatethecompletediscontinuationoftherapyandtheuseoflife-savingmeasures,asrequired.Activemonitoringofsymptomsandlaboratoryparametersisrecommendedinordertopreventdeathduetocheckpointblockade(grade5).Currentresearchisaimedatidentifyingpredictivebiomarkersfororgan-specifictoxicitiesduetocheckpointtherapy.Forexample,neutrophilactivation,asmeasuredbyincreasedexpressionofthebiliaryglycoproteinCEACAM1andthecellsurfaceglycoproteinCD177,correlateswithgastrointestinal-relatedsideeffectsinpatientstreatedwithipilimumab153.Increasesineosinophilcountsandreleaseofthepro-inflammatorycytokineIL-17areassociatedwithtoxicityregardlessoftheorganaffected154,155.Pharmacogenomicprofiling(usinggeneticinformationtopredictresponsestodrugs)mayprovidemoreinsightintotherelevantgenesandpathwaysmediatingtoxicity137.Ultimately,thehopeisthatgenetic,biochemicalormetabolicprofilingcouldeitherpre-screenorrapidlydetectindividualslikelytoexperiencethemostsevereadversereactionstocheckpointtherapy.AdoptiveTcelltransfertherapyAdoptiveTcell(ATC)therapy,inwhichautologousorallogenicTcellsareinfusedintopatientswithcancer,hasshownconsiderablepromiseinrecentyears.TheviabilityofthistypeoftherapywasfirstshownbySouthametal.in1966,whenhalfofthepatientswithadvancedcancerdemonstratedtumourregressionfollowingco-transplantationwithpatient-derivedleukocytesandautologoustumourcells156.Allogenichaematopoieticstemcelltransplantsforleukaemiarepresentedthefirsteffectiveadoptivetransferapproachdeployedclinically,andclinicalimprovementwasshowntobemediatedbyaTcellgraftversustumourresponse157.ATCwithtumour-infiltratinglymphocytesATCtherapyusingtumour-infiltratinglymphocytes(TILs)forthetreatmentofmetastaticmelanomawaspioneeredattheNationalCancerInstituteinthelate1980s158.LymphocytesisolatedfromacancerbiopsyweregreatlyexpandedwithIL-2andthenreinfusedintravenouslyintothesamepatientwithalargebolusofIL-2.Theobjectiveresponseratewas34%;however,themediandurationofresponsewasonly4monthsandfewpatientsexperiencedacompleteresponse159.LaterstudiesincorporatinglymphodepletionbeforeATCtherapyin93patientswithmetastaticmelanomaweremoresuccessful,withcompletetumourregressionin20(22%)patients,19ofwhomwerestillincompleteremission3yearsaftertreatment160.Thescreeningandenrichingforneoantigen-specificTILs,madepossiblebyhigh-throughputtechnologies,recentlydemonstratedpromiseinapatientwithmetastaticbreastcancer161.Inaddition,knockdownofthegeneencodingcytokine-inducibleSH2-containingprotein(Cish),anegativeregulatorofTCRsignalling,wasshowntoboosttheantitumouralresponseofATCtherapyinmousemodels162.However,inorderforTIL-basedATCtherapytoelicitdurableresponses(Fig. 5),effectorTcellswithantitumouractivitymustbepresentinthetumour,whichisnotthecaseformanycancertypes163.OtherinnovativeapproachestotweakTcellactivityandproliferationmayallowforagreaterpaletteoftreatmentstobedeveloped.Fig.5:AdoptiveTcelltherapy.a|Tumour-infiltratinglymphocytes(TILs)areisolatedfromapatienttumourbiopsyandexpandedexvivowithIL-2.TILsaretheninfusedintoapatientwhohasundergonelymphodepletiontoprovideanicheforthetransferredTILstoexpand,actaseffectorcellsandgenerateimmunologicalmemory.AstheTcellswerederivedfromthetumour,itisassumedthatagoodproportioncanrecognizetumour-associatedantigens(TAAs)orneoantigens.b|ThephysiologicalTcellreceptor(TCR)complexgainsitsspecificityfrompolymorphicα-andβ-glycoproteinchainsthathaveanantigen-bindingportionandaconserveddomainthatassociatewithandsignalthroughagroupofnon-polymorphicproteins,CD3γ,δ,εandζ.BioengineeringoftheTCRα-andβ-glycoproteinantigen-bindingdomain(purple),whilepreservingtheconserveddomains(CαandCβ),allowsforthedevelopmentandexpansionofTlymphocyteswithspecificitytotumourneoantigens.c|Originally,chimericantigenreceptors(CARs)werecomposedofanextracellularsingle-chainfragmentofanantibodyvariableregioncoupledtoaCD3ζ-signallingdomain.Poorexpansionandfunctionalityofthesefirst-generationCARsledtothedevelopmentofsecondandthird-generationCARscontainingintracellularmodulesfromco-stimulatorymolecules(CD28and/or4-1BB)thatprovideadditionalsignalsnecessarytofullyactivatetheTcell.SubsequentgenerationsofCARTcellscontainfurthermodificationstoimproveantitumourefficacy.Forexample,fourth-generation‘armoured’CARTcellshavebeenengineeredtosecretepro-inflammatorycytokines,suchasIL-12,toovercomeimmunosuppressioninthetumourmicroenvironment.Thechimericcytokinereceptor4αβ,comprisingtheectodomainofIL-4RαfusedtotheIL-2/IL-15Rβchain,signalsinresponsetoIL-4,anabundantcytokineinnumeroustumourtypes.VH,variableheavychain;VL,variablelightchain.FullsizeimageEngineeredlymphocytesforATCThechallengesassociatedwithexpandingtumour-specificTcellsinvitroledtothedevelopmentofTCR-engineeredlymphocytes(Fig. 5).However,thesecellsarelimitedtorespondingtotumourantigenspresentedbytheMHC(alsoknownashumanleukocyteantigen(HLA)inhumans)ratherthansurfaceantigensontumourcells163.However,syntheticchimericantigenreceptors(CARs)canbypassMHCrestrictionanddirectspecificcytotoxicitytoatargetmoleculeonthesurfaceofthemalignantcell.IsolatedTcellsfromthepatient(orallogeneicdonor)aregeneticallymodifiedtoexpressCARsandthenexpandedandinfusedintothepatient.ThisovercomestheproblemthattumourcellsoftendownregulateMHCmolecules,whichleavesthecellunabletopresentantigentoconventionalTcells164.CARscompriseanantigen-bindingdomain,mostoftenfromthevariableregionsofantibodies,linkedtosignallingdomainsoftheTCRandvariousco-stimulatorymolecules(Fig. 5).Giventhedomainmodularityofcellsurfacesignallingproteins,mixesandmatchesofextracellulartargetingdomainsandinternalsignaltransductiondomainscanbeassembledusingproteinengineering.ThisoffersmanyoptionstotailorCARstospecifictumours.ThefirstgenerationofCARTcellsreliedonlyontheCD3ζ-chaintosimulateTCRsignalling165,butthisdesignwasineffectiveinclinicaltrialsowingtolimitedTcellproliferationandcytokineproduction166,167.SubsequentgenerationsofCARTcellshavebeenengineeredtoincludedomainsfromCD28,CD40ligandandotherpositiveregulatorsofTcellactivationtopotentiateactivationandcytotoxicityinvivo168,169,170,171.Anengineeredsingle-chainPD1blockerhasalsodemonstratedsimilarenhancedefficacytosecond-generationCARTcellswithsolelyaCD28domain172.EventhoughCARTcellsaretypicallyengineeredusingretroviraltransduction,recentworkhasusedCRISPR–Cas9technology.CRISPR–Cas9canbeusedtoedittheTCRgermlinesequencedirectly,whichcouldleadtomoreuniformCARTcellgenerationand,ultimately,betterefficacy173.AlimitationtothedevelopmentofCARTcelltherapiesistherequirementforadistincttissue-restrictedtargetantigenonthetumourcellsurface.Forexample,CARTcellsdesignedwithspecificityforthecellsurfacemoleculeCD19,whichisexpressedbyallBcells,havebeensuccessfulinthetreatmentofBcellmalignancies.Thefirstclinicaldeploymentofsecond-generationCD19-specificCARTcellsledtodurableresponsesinchroniclymphocyticleukaemia174.AdditionalclinicaltrialsofCD19-specificsecond-generationCARTcellsinBcellacutelymphoblasticleukaemia(B-ALL)ledtoremissioninallpatientswithB-ALLwhoweretested175.Afollow-upreportonpatientswithB-ALLenrolledinthisclinicaltrialshowedcompleteremissionofdiseasein44of53(83%)patientswithamedianfollow-upof29months176.SimilarsuccesseswerereportedforpatientswithdiffuselargeBcelllymphoma177,leadingtoFDAapprovalfortheseBcellmalignanciesin2017.TheclinicalsuccessofCARTcelltherapyforthetreatmentofB-ALLanddiffuselargeBcelllymphomaisdue,inpart,totargetingtheCD19antigen,anidealcandidateowingtoitshighexpressionincertainBcellmalignanciesandspecificitytotheBcelllineage.CrossovertargetingofnormalCD19+Bcellsdoesnothampertherapyorcauseseveresideeffects.However,evenasanidealtarget,CD19antigenlossisacommoncauseoftreatmentfailure.CD22isanotherantigencommonlyexpressedbymalignantcellsinB-ALLandhasshownpromiseasatargetforCARTcelltherapyinaphaseItrial178.Othertargets,especiallytumourneoantigens,arecurrentlybeinginvestigatedforhaematologicalmalignanciesthatdonotexpressCD19,aswellasforsolidtumours179,180.Bcellmaturationantigen(BCMA)-targetedCARTcelltherapyispoisedforFDAapprovalformultiplemyelomain2020onthebasisofpromisingpreclinicalandclinicaldata181,182.However,owingtoreportedpatientrelapses,theinvestigationofadditionaltargetantigenscontinues.Apreclinicalstudyrecentlyidentifiedanothertargetantigen,GPRC5D,withcomparableefficacyandtoxicitytoBCMA-targetedCARTcelltherapy183.Thusfar,CARTcelltherapyhasonlybeenmodestlysuccessfulforsolidtumours184,185,186andinnovativeapproachestoimprovetherapyareunderway179.Arecentlyidentifiedpan-cancertarget,B7-H3(alsoknownasCD276),hasdemonstratedsuccessinmultiplepaediatricsolidtumourmodels187.Inadditiontodirectlyactingascytolyticagents,CARTcellscanalsotargettheunhospitabletumourmicroenvironmentandreviveexhaustedTcells188,189.Forexample,anewgenerationof‘armoured’CARTcellsengineeredtoproduceIL-12canovercomeimmunosuppressionbyTregcellsandmyeloidcellsinthetumourenvironment,promoteCD8+Tcellcytolyticactivity190andenhancemyeloidcellrecruitmentandantigenpresentation191,192.PreclinicalmodelsusingIL-12-expressingCARTcellsthattargettheconservedextracellulardomainofmucin16(MUC16ecto)haveshownpromisingresultsinmodelsofovariancancer,atumourwithpoorprognosisinadvancedstages193,194.AphaseIclinicaltrialiscurrentlyinprogressforpatientswithovarian,fallopianorprimaryperitonealcancer195.TheefficacyofCARTcellsmayalsobestrengthenedthroughco-expressionofachimericcytokinereceptor(4αβ)thatstimulatesproliferationinresponsetoIL-4,acytokinethatisusuallyabundantinthetumourmicroenvironment.PreliminarystudieshaveshownthatthisapproachworksforCARTcellsdirectedagainstdifferenttumour-associatedantigens(TAAs)196andclinicaltrialsareunderwayinheadandneckcancer197.Inaddition,overexpressionofthetranscriptionfactorJUNwasshowntoconferresistancetoCARTcellexhaustion198.Overall,CARTcellshavebeensuccessfulforthetreatmentofBcellmalignanciesanditwillbeexcitingtocontinueresearchonthisnewtreatmentmodalityforintractabletypesofcancer.LimitationsandadverseeffectsofATCsToxicitiescanarisefromCARTcelltherapyandaffectmanydifferentorgansystemswitharangeofseverity199.Patientsmostcommonlyexperiencecytokinereleasesyndrome(CRS)andneurotoxicity200.CRSresultsfromthepowerfulactivationandproliferationofCARTcellsinvivoandtypicallyappearsquicklyaftercelltransfer.Thesymptomsareoftenmildandflu-likebutcanalsobesevereandlife-threatening,involvinghypotension,highfever,capillaryleakage,coagulopathyandmultisystemorganfailure.Seriousneurologicaleventscanalsooccur,suchasCARTcell-relatedencephalopathysyndrome,typicallycharacterizedbyconfusionanddelirium,butsometimesalsoassociatedwithseizuresandcerebraloedema199.Glucocorticoidsarethefirst-linetreatmentformilderformsofCRSandCARTcell-relatedencephalopathysyndrome.Tocilizumab,ahumanizedanti-IL-6antibody,isahighlyeffectivesecond-linetreatmentforCRScausedbyCARTcelltherapy201.OthersideeffectsofCD19-specificCARTcelltherapyincludelymphopeniaandhypogammaglobulinaemia202,whichcanbeeffectivelymanagedwithintravenousimmunoglobulintherapy,similartothetreatmentthatpatientswithprimaryBcellimmunodeficienciesreceive203.Themechanismsbehindthesesideeffectsareunclearandfurtherresearchmayyieldwaystoavoidorminimizetoxicity.RecentdevelopmentofanovelmurinemodelofCRSdemonstratedthatitisnotmediatedbyCARTcell-derivedIL-6butratherbyrecipientmacrophagesthatsecreteIL-6,IL-1andnitricoxide.Therefore,IL-1blockaderepresentsapossiblenovelinterventioninthearmamentariumagainstCRS204.Moreover,aclinicalstudyoflow-affinityCD19-specificCARTcellsdemonstratedreducedtoxicityandenhancedefficacy205.AdditionaleffortstoreducetoxicityinvolvetheengineeringofCARTcellswithmultiplereceptorspecificities206andreducingthehalf-lifeofcellulartoxicitybyusingmRNA-basedmethodsthatallowfortransientreceptorexpression207orincludingsuicidecassettesthatcanbeactivatedbyexogenousagentstoclonallydeletetheinfusedcells208.TheATCapproachnecessitatesapatient-specifictherapydesign,itscostcanbeprohibitive,patientaccesstothetreatmentislimitedandmanufacturingischallenging.IntheUnitedStates,theCARTcelltherapiestisagenlecleucelandaxicabtageneciloleucelhaveadirectcostofUS$475,000andUS$373,000perpatient,respectively209.However,thesevaluesdonottakeintoaccounttheadditionalcostsassociatedwithtreatingthesevereadverseeffectscommontoCARTcelltherapy,whichareestimatedtoincreasedrug-associatedcostsbyUS$30,000ormore209.IncomparisonwithCARTcelltherapy,checkpointblockadehasapricetagofapproximatelyUS$12,500permonth210.PatientaccesstoCARTcelltherapiesalsorepresentsamajorproblemasthereareonlyafewlaboratoriescertifiedtogenerateCARTcellsandonlyafewspecializedtertiarycarecentresabletoadministerthistherapy211.Lastly,variabilityinthemanufacturingofCARTcellsandalackofstandardpracticescancontributetoheterogeneousoutcomes211.CancervaccinesCancervaccinesprompttheimmunesystemtoprotectthebodyfromcancerandfallintotwocategories,prophylacticandtherapeutic.ProphylacticvaccinesagainsthepatitisBandhumanpapillomavirushavebeeninstrumentalinreducingtheincidenceofhepatocellularcarcinomaandcervicalcancer,respectively212.Theseareclassicvaccinesusedtopreventinfectionbyoncogenicviruses.Bycontrast,therapeuticvaccinesaimtoharnesstheimmunesystemtoeliminatedisease-causingcellsthatarealreadyneoplastic212.AnearlyexampleofthisistheuseofthebacillusCalmette–Guérinvaccine,comprisingattenuatedMycobacteriumbovis,whichisgenerallyusedasaprophylactictuberculosisvaccinebuthasalsobeenrepurposedasaprimitivetherapeuticvaccineforbladdercancer213.Historically,thediscoveryofTAAs214,whicharehighlyexpressedontumourcellsandtoalesserextentonnormaltissues,openedthedoorforfurthertherapeuticvaccine-basedapproaches.However,asTAAsareoftenrecognizedbytheimmunesystemas‘self’,viralantigensandneoantigensthatareuniquetoamalignancymaybemoresuitedasvaccinetargets.Earlyvaccinationapproachesinthe1970swerebasedonautologoustumourvaccinesandinvolvedtheadministrationofpatient-derivedtumourcellstogetherwithanadjuvantorvirusinordertoactivatepolyclonalimmuneresponsestoTAAs215.Forexample,autologoustumourcellsinfectedwithNewcastlediseasevirushavebeenusedinonetypeofcancervaccinethathasdemonstratedsuccessinpreclinicalmodelsofmetastaticlymphomaandmelanoma216,217.ModifiedNewcastlediseasevirus-basedvaccineshavebeenengineeredtoexpressgranulocyte–macrophagecolony-stimulatingfactor(GM-CSF)inattemptstoenhanceefficacy218.Synergismofvaccineapproacheswithcheckpointblockadeagentshasalsobeendemonstratedinsomepreclinicalstudiesofmelanoma46,219.NumerousautologoustumourvaccinesarebeinginvestigatedinphaseIIandphaseIIItrialsbuthaveyettoreceiveFDAapproval.Thisapproachsuffersfrommultiplelimitations,mostnotablythedifficultyinobtainingpatient-derivedtumourcellsincertaincancertypes212.Newerapproachesincludethedevelopmentofpersonalizedrecombinantcancervaccinesinformedbynext-generationsequencingofgenomicDNAfromtumours.DevelopmentofpersonalizedrecombinantcancervaccinesVaccinesthatelicitresponsestotumour-derivedneoantigensshouldinducemorerobustimmuneresponsesandcausefewerautoimmune-relatedtoxicitiesthanvaccinesbasedonself-derivedTAAs,astheTcellsthatareactivatedbysuchavaccinewouldnothaveundergonenegativeselectionduringdevelopment.Thesefactors,aswellastheabilitytoidentifyneoantigensthroughnext-generationsequencingofgenomicDNAfromtumours,hasshiftedthefocustoinvestigatingtheclinicalfeasibilityofmakingpersonalizedrecombinantvaccinesthattargetneoantigens.However,althoughahighermutationalburdeninthetumourhasbeenshowntocorrelatewithgreaterimmunogenicityandsurvivalaftercheckpointblockade66,220,onlyasmallpercentageofneoantigensspontaneouslygenerateimmuneresponsesinpatientswithcancer221.Sahinandcolleaguesshowedthatneoantigensidentifiedthroughnext-generationsequencingcangenerateantitumourresponsesinvivo;inmicethatwerevaccinatedwith50differentneoantigens,16wereimmunogenic222,223.Interestingly,mostneoantigensinducedcytokineresponsesfromCD4+TcellsratherthanCD8+Tcells,suggestingthatneoantigensareselectedforMHCclassIIbinding222,223.OtherpreclinicalstudiesdemonstratedeffectiveCD4+andCD8+Tcellresponsestoneoantigenvaccinesinvariouscancertypes223,224,225,226,227.However,recentpreclinicalworkhasalsohighlightedthenon-overlappingroleofneoantigenresponsesmediatedbyCD4+andCD8+Tcells228.Todesignandmanufactureapersonalizedvaccineforclinicaluse,computer-basedalgorithmsareusedtoidentifywhichtumour-derivedpeptidescouldpotentiallyformasuitableTAAortumourneoantigenwiththepatient’sMHCalleles(Fig. 6).Thereareseveraldifferentstrategiestoformulateneoantigen-basedvaccines,includingassyntheticpeptides,mRNA,viralandDNAplasmidsorantigen-loadeddendriticcells,anditisdifficulttodirectlycomparehoweachstrategyinfluencesimmunogenicity229,230.Inonetrialthattestedamulti-peptidevaccinethatincludedupto20personalneoantigens,4of6patientswithmelanomawhoenteredthestudywithstageIIIdiseaseexperiencedcompleteresponseswithnorecurrence25monthspostvaccination,andtheother2patientswithprogressivediseasesubsequentlyunderwentanti-PD1therapythatresultedincompletetumourregression231.Further,ofthe97differentneoantigensthatweretestedforimmunogenicityinthisstudy,60%elicitedCD4+Tcellresponseswhereas15%elicitedCD8+Tcellresponses.Anotherclinicaltrial,whichtestedanRNAvaccinethatencoded10peptidesrepresentingpersonalizedTAAsin13patientswithadvancedmelanoma,achievedsimilarresults232.Fig.6:Personalizedvaccinedevelopment.HealthytissueandtumourtissuefromapatientwithcanceraresubmittedforDNAsequencingandbioinformaticanalysestoidentifygenevariantsthatencodepeptidesthatarespecifictothetumour(neoantigens).Predictionalgorithmsarethenusedtoscreenforneoantigensthatarelikelytostablybindtothepatient’sMHC(alsoknownasHLAinhuman)moleculesandtheirexpressionisvalidatedbysequencingtumourmRNA.Multiplepredictedneoantigensarethenformulatedintovaccines,whichareadministeredtothepatienttogetherwithadjuvants.Posttreatment,thepatientisregularlymonitoredforneoantigen-specificimmuneresponsesandtumourgrowth.FullsizeimagePitfallsandadverseeffectsofcancervaccinesAlthoughtheseearlycancervaccineexperimentshavebeenpromising,challengesremain.Anindividualtumourcanharbourthousandsofsomaticmutationsandpredictingwhichneoantigenscanelicitstrongantitumourresponsesremainsanimperfectart.However,thecurrentmethods,consistingofvalidatingmRNAexpressionofthemutationintumourcellsandusingsoftware/databasestopredictpeptide–MHCbinding,havebeensurprisinglyeffectiveinclinicaltrialstodate229.However,thissuccesshasbeenbiasedtowardsMHCclassI-specificneoantigensaspredictionforMHCclass IImoleculespresentsuniquechallenges.Forexample,theincreaseddiversityofMHCclassIImoleculesandthestructuralnatureoftheiropenbindingpocketmakediscerningapredictablebindingmotifdifficult233.Takentogether,thesedifferencesbetweenMHCclasseshighlighttheparticularneedfornewMHCclassIIpredictionalgorithms.Otherchallengingfactorstoconsiderarethetimeandcostassociatedwithdevelopingbespokevaccines.Currently,developmentandproductionofthesevaccinestakesapproximately4months,and,althoughthedowntimecanbeusedtoinitiateothertypesoftreatment,shorteningthetimespantopersonalizedtreatmentiscritical.Forrapidlygrowingormetastatictumours,monthsmightmatter.Ongoingeffortstoimprovedesignandmanufacturingcouldshortentheproductiontimetoseveralweeks229.Overall,thecomprehensiveidentificationofsomaticmutations,andtheevaluationofpeptidesderivedfromthesemutationstoelicitimmuneresponses,hasrenewedinterestinvaccinationstrategiesforcancertreatment.Eventhoughearlyclinicaltrialsarepromising,extrapolationofthesefindingscouldbemisleadingandadvancedclinicaltrialswillultimatelydeterminetheefficacyofpersonalizedvaccinetherapy.Nonetheless,cancervaccinesareprototypical‘singlepatientandsingledisease’precisionmedicationsandwouldhavebeenintherealmofsciencefictionjustafewdecadesago.Furtherresearchandtechnologicaldevelopmentswillnodoubtleadtogreaterprecisionandeffectivenessandalsoprovideabetterunderstandingofthemechanismsofantitumouralimmuneresponses.EmergingcancerimmunotherapeuticsThemoleculardiversityofgeneticchangesthattransformcellsinhumancancerscreatesaplethoraofdiseasesinvolvingspecifictissuetypesandcancermechanisms.Giventheexcitingadvancesincancerimmunotherapy,variousmodificationstocurrentimmunotherapeuticapproachesarebeingdevelopedandtestedtoaddressthecomplexityofcancerimmunopathogenesisandcancertargetability.CombinationtherapiesFollowingtheclinicalsuccessofcheckpointblockademonotherapy,combinationtherapiesthatcoupleagentswithdistinctmechanismsofactionhaveaugmentedtreatmentsuccessinvariouscancers.Forexample,ipilimumabandnivolumabcombinationtherapyconferredasignificantsurvivalbenefitinpatientswithmetastaticmelanomaandadvancedrenalcellcarcinoma,leadingtoFDAapprovalsfortheseconditions234,235.Thesynergismofanti-CTLA4andanti-PD1therapiesisnotsurprisingbecauseCTLA4andPD1regulateantitumouralimmunityinacomplementarymanner8.CrosstalkbetweentheCTLA4andPD1pathways,mediatedbyCD80andPDL1dimerization,providesadditionalinsightintothemechanismbehindthesuccessofdualtherapy236,237.However,asexpected,combinationcheckpointtherapyalsoincreasestheriskofmedication-inducedtoxicities235.Combiningradiationtherapywithcheckpointblockadeisanothertreatmentoptionforrecalcitranttumours.Theimmunomodulatoryeffectofradiotherapyalonerepresentsadouble-edgedsword.Mechanistically,radiotherapyincreasesthediversityofantitumouralTcellresponsesbyexposingnovelneoantigensatthesametimeasbluntingtheimmuneresponsethroughtheinductionofPDL1expressionontumourcells238.Therefore,andonthebasisofpreclinicaldata,combiningradiotherapywithblockersofthePD1axisrepresentsanattractivesynergisticcombination239.Patientswithmetastaticdiseasemayrepresentatargetpopulationfordeployingthiscombinationasabscopalresponsestoradiotherapyareboostedbycheckpointblockadeformanytumourtypes238,240.Overall,dualcheckpointblockadeandradiation–checkpointpolytherapyrepresentpromisingavenuesforsynergistictherapeuticresponsesbecausethesedrugcombinationsdisplayuniqueandcomplementarypharmacodynamics.NewtargetsforcheckpointblockadeResearchisalsodirectedatnewlydiscoverednegativeregulatorsofTcellactivation,includinglymphocyteactivationgene3(LAG3),Tcellimmunoglobulin3(TIM3),V-domainimmunoglobulinsuppressorofTcellactivation(VISTA),B7-H3andTcellimmunoreceptorwithimmunoglobulinandimmunoreceptortyrosine-basedinhibitorymotifdomains(TIGIT),asadjuvantcancerdrugs241,242,243.LAG3isaninhibitoryligandthatreducesTcellactivationbyblockingCD4contactsitesonMHCclassIIproteinsandisexpressedonactivatedTcellsandTregcells.ItpreventstheoverexpansionoftheTcellcompartmentbyinducingcellcyclearrest244.LikePD1,LAG3isamarkerofTcellexhaustion,whichportendsapoorerprognosiswhenexpressedonTILs245.Multiplestrategiesofblockadehavebeendeveloped,includingaLAG3:IgfusionproteinandLAG3-targetedmAbs246.Inclinicaltrialsinpatientswithrenalcellcarcinomaandpancreaticadenocarcinoma,thesedrugsdidnotsucceedasmonotherapieseventhoughtheyincreasedthefrequencyoftumour-specificTcells246.However,whencombinedwithpaclitaxelformetastaticbreastcancer,50%ofpatientstreatedwithLAG3:Igrespondedtotreatment247.Recentresearchhasdemonstratedthatfibrinogen-likeprotein1(FGL1)activatesLAG3independentlyofbindingMHCclassIImoleculesandinterferencewiththisinteractionisessentialforunleashingpotentantitumouraleffects248.TIM3isanothernegativeregulatoroftheTcellresponse.RatherthaninhibitingcellcycleprogressionlikeLAG3,itregulatesapoptosisfollowinggalectin9 binding249.Itsupregulationcouldrepresentamechanismofresistancetoanti-PD1therapy,makingcombinationtherapyanattractiveoptiontoboosttheeffectivenessofanti-PD1therapy.Inaddition,TIM3expressioncorrelateswithpoorprognosisinnon-small-celllungcancerandfollicularlymphoma,suggestingaroleincancerprogression250.SimilartoTIM3,VISTAisanothermoleculeshowntobeassociatedwithresistancetocurrentcheckpointinhibitorsandhasdemonstratedsynergismwithanti-PD1therapyinmousemodels251,252.B7-H3representsanothertargetablenegativeregulatoroftheTcellresponse.Itishighlyexpressedinmanytumourtypes,includingnon-small-celllungcarcinoma,prostatecancer,pancreaticcancer,ovariancancerandcolorectalcancer241,243.Enoblituzumab,ahumanizedmAbtargetingB7-H3,waseffectiveatinducingantitumouralresponsesinaphaseIstudyofpatientswithvarioustumourtypes253.Dual-affinityretargeting(DART)proteinsthatbindtoB7-H3andCD3,aswellasradioactiveiodine-conjugatedB7-H3mAbs,representadditionalwaystomodulatethispathwayandareinearly-phaseclinicaltesting254,255.Lastly,TIGIT,whichcontainstwoimmunoreceptortyrosine-basedinhibitorymotifsinitsintracellulardomainanddampensTcellhyperactivation,isbeinginvestigatedasacheckpointtarget.ItismorerobustlyexpressedinTILsthaninperipheralcells,makingitanattractivetargetowingtoitsincreasedspecificitycomparedwithothercheckpointmolecules243.PreclinicalevidencedemonstratesthatTIGITblockadeaugmentstheeffectofpre-existingcheckpointinhibitorsandreinvigoratestumour-specificexhaustedTcells250,256.Currently,blockadeofimmunecheckpointsotherthanCTLA4orthePD1axishavenotyetshownmajorclinicalbenefitsassingleagentsbutrathermayincreasetheeffectivenessofpre-existingtreatments.Althoughtheblockingofimmunecheckpointmoleculesreleasespotentantitumouralresponses,thestimulationofTcellco-stimulatoryreceptors,includinginducibleco-stimulator(ICOS),tumournecrosisfactorreceptorsuperfamilymember4(TNFRSF4;alsoknownasCD134),tumournecrosisfactorreceptorsuperfamilymember9(TNFRSF9;alsoknownas4-1BB),glucocorticoid-inducedtumournecrosisfactorreceptor(GITR)andCD27,canalsoamplifytheeffectofexistingimmunotherapies,asshownpreclinicallyandinearly-stageclinicalstudies168,170,171,241,242,243,257.ICOSisamemberoftheCD28familyofco-stimulatorymoleculesthatmediatescontext-dependentcytokineresponseswithanemphasisonThelper2(TH2)cellskewing258.ICOSstimulationbyvaccinesmodifiedtoexpressICOSligandexhibitedsynergismwithtreatmentwithCTLA4-blockingantibodiespreclinically259.ICOSupregulationfollowingtreatmentwithcurrentlyapprovedanti-CTLA4andanti-PD1therapiesmayrepresentabiomarkerofactiveantitumouralresponsesbecauseitassociateswithfavourableoutcomes260.TNFRSF4isanotherco-stimulatorymoleculeforwhichpreclinicalevidenceindicatesaroleindeployingrobustantitumouralresponsesinsarcoma,melanomaandbreastcancer261,262.DatasuggestthattargetingTNFRSF4amplifiesanti-PD1therapybecauseTNFRSF4agonismcanupregulatePDL1expression263.Inadditiontosynergismwithcheckpointblockade,TNFRSF4upregulationwithinCARTcellsbytransfectionrepresentsawaytoaugmenttumourcytotoxicity170.AgonismofadditionalTNFRfamilymembers,suchasTNFRSF9,GITRandCD27,isbeingtestedasadjuvanttherapyinphaseI/IItrialsforvarioustumourtypes,withpromisingresults243.Therefore,agonismofpositiveTcellco-stimulatorysignals,inconcertwiththeexistingcheckpointinhibitorsorCARTcells,representsanoveltherapeuticavenuetoboostantitumouralimmunity.ConcludingremarksCancerimmunotherapyfocusedonTcellshasemergedasapowerfultoolinthearmamentariumagainstcancer.Nevertheless,ittookmanyyearsofbasicsciencediscoveriesandsubsequentclinicaltranslationtounequivocallydemonstratethepowerofmodulatingtheimmunesystemtotreatcancer.FurtherresearchthatinvestigatestheregulationofTcellsandotherimmunecells,forexampleAPCsandnaturalkillercells,mayallowustoenhancethepowerofthisapproach.In‘difficulttotreat’tumours,theeffectsizesobservedinclinicaltrialsofcheckpointblockadeagents,ATCtransfertherapiesandcancervaccineshavebeenfarhigherthanthemosteffectivechemotherapeuticagents.Althoughimmune-relatedadverseeffectsarecommon,theseinnovativeimmune-targetingtherapiesarebettertoleratedthantraditionalchemotherapeuticagents.Theburgeoningfieldofcancerimmunotherapycontinuestogrowasindicationsforcurrentlyapprovedtherapiesexpandandthesearchfornoveldruggabletargetscontinues.Thecancerimmunotherapysuccessstorieswehaverecountedhighlighttheintrinsicconnectionbetweenbasicscienceresearchandclinicalpractice.Theyalsoillustratehowabench-to-bedsideapproach,builtuponasolidbasicsciencefoundation,canbesuccessfulinfightingoneofhumanity’smostdreadeddiseases. ReferencesOiseth,S.J.&Aziz,M.S.A.-E.Cancerimmunotherapy:abriefreviewofthehistory,possibilities,andchallengesahead.J.CancerMetastasisTreat.3,250–261(2017).CAS GoogleScholar Decker,W.K.&Safdar,A.Bioimmunoadjuvantsforthetreatmentofneoplasticandinfectiousdisease:Coley’slegacyrevisited.CytokineGrowthFactor.Rev.20,271–281(2009).PubMed GoogleScholar Decker,W.K.etal.Cancerimmunotherapy:historicalperspectiveofaclinicalrevolutionandemergingpreclinicalanimalmodels.Front.Immunol.8,829(2017).PubMed PubMedCentral GoogleScholar Gross,L.IntradermalimmunizationofC3Hmiceagainstasarcomathatoriginatedinananimalofthesameline.CancerRes.3,326(1943). GoogleScholar Smith,J.L.Jr.&Stehlin,J.S.Jr.Spontaneousregressionofprimarymalignantmelanomaswithregionalmetastases.Cancer18,1399–1415(1965).PubMed GoogleScholar Chow,M.T.,Moller,A.&Smyth,M.J.Inflammationandimmunesurveillanceincancer.Semin.CancerBiol.22,23–32(2012).CAS PubMed GoogleScholar Halliday,G.M.,Patel,A.,Hunt,M.J.,Tefany,F.J.&Barnetson,R.S.C.Spontaneousregressionofhumanmelanoma/nonmelanomaskincancer:associationwithinfiltratingCD4+Tcells.WorldJ.Surg.19,352–358(1995).CAS PubMed GoogleScholar Fife,B.T.&Bluestone,J.A.ControlofperipheralT-celltoleranceandautoimmunityviatheCTLA-4andPD-1pathways.Immunol.Rev.224,166–182(2008).CAS PubMed GoogleScholar Brunet,J.F.etal.Anewmemberoftheimmunoglobulinsuperfamily—CTLA-4.Nature328,267–270(1987).ThisstudyscreensmouseTcellcDNAlibrariesandidentifiesCTLA4asanewimmunoglobulinsuperfamilymemberexpressedwithinthelymphoidlineagepredominantlyinactivatedcells.CAS PubMed GoogleScholar Dariavach,P.,Mattei,M.G.,Golstein,P.&Lefranc,M.P.HumanIgsuperfamilyCTLA-4gene:chromosomallocalizationandidentityofproteinsequencebetweenmurineandhumanCTLA-4cytoplasmicdomains.Eur.J.Immunol.18,1901–1905(1988).CAS PubMed GoogleScholar Harper,K.etal.CTLA-4andCD28activatedlymphocytemoleculesarecloselyrelatedinbothmouseandhumanastosequence,messageexpression,genestructure,andchromosomallocation.J.Immunol.147,1037–1044(1991).CAS PubMed GoogleScholar Walunas,T.L.etal.CTLA-4canfunctionasanegativeregulatorofTcellactivation.Immunity1,405–413(1994).CAS PubMed GoogleScholar Lo,B.etal.AUTOIMMUNEDISEASE.PatientswithLRBAdeficiencyshowCTLA4lossandimmunedysregulationresponsivetoabatacepttherapy.Science349,436–440(2015).CAS PubMed GoogleScholar Linsley,P.S.etal.CTLA-4isasecondreceptorfortheBcellactivationantigenB7.J.Exp.Med.174,561–569(1991).CAS PubMed GoogleScholar Linsley,P.S.etal.HumanB7-1(CD80)andB7-2(CD86)bindwithsimilaraviditiesbutdistinctkineticstoCD28andCTLA-4receptors.Immunity1,793–801(1994).ThisstudydemonstratesthatCD80andCD86bindtoCTLA4withgreateraviditythanCD28.CAS PubMed GoogleScholar Pentcheva-Hoang,T.,Egen,J.G.,Wojnoonski,K.&Allison,J.P.B7-1andB7-2selectivelyrecruitCTLA-4andCD28totheimmunologicalsynapse.Immunity21,401–413(2004).CAS PubMed GoogleScholar Krummel,M.F.&Allison,J.P.CD28andCTLA-4haveopposingeffectsontheresponseofTcellstostimulation.J.Exp.Med.182,459–465(1995).CAS PubMed GoogleScholar Krummel,M.F.&Allison,J.P.CTLA-4engagementinhibitsIL-2accumulationandcellcycleprogressionuponactivationofrestingTcells.J.Exp.Med.183,2533–2540(1996).CAS PubMed GoogleScholar Waterhouse,P.etal.LymphoproliferativedisorderswithearlylethalityinmicedeficientinCtla-4.Science270,985–988(1995).CAS PubMed GoogleScholar Tivol,E.A.etal.CTLA4IgpreventslymphoproliferationandfatalmultiorgantissuedestructioninCTLA-4-deficientmice.J.Immunol.158,5091–5094(1997).AlongwithWaterhouseetal.(1995),thisinvivomurinestudydemonstratesthatCD4+TcellsarenecessarytocauseseveremultiorganautoimmunityinthecontextofCTLA4deficiency,whichcouldbereversedbyCTLA4Ig.CAS PubMed GoogleScholar Mandelbrot,D.A.,McAdam,A.J.&Sharpe,A.H.B7-1orB7-2isrequiredtoproducethelymphoproliferativephenotypeinmicelackingcytotoxicTlymphocyte-associatedantigen4(CTLA-4).J.Exp.Med.189,435–440(1999).CAS PubMed PubMedCentral GoogleScholar Tai,X.,VanLaethem,F.,Sharpe,A.H.&Singer,A.InductionofautoimmunediseaseinCTLA-4–/–micedependsonaspecificCD28motifthatisrequiredforinvivocostimulation.Proc.NatlAcad.Sci.USA104,13756–13761(2007).CAS PubMed PubMedCentral GoogleScholar Lee,S.etal.AbataceptalleviatessevereautoimmunesymptomsinapatientcarryingadenovovariantinCTLA-4.J.AllergyClin.Immunol.137,327–330(2016).PubMed GoogleScholar Kuehn,H.S.etal.ImmunedysregulationinhumansubjectswithheterozygousgermlinemutationsinCTLA4.Science345,1623–1627(2014).CAS PubMed PubMedCentral GoogleScholar Intlekofer,A.M.&Thompson,C.B.Atthebench:preclinicalrationaleforCTLA-4andPD-1blockadeascancerimmunotherapy.J.Leukoc.Biol.94,25–39(2013).CAS PubMed PubMedCentral GoogleScholar Darlington,P.J.etal.SurfacecytotoxicTlymphocyte–associatedantigen4partitionswithinlipidraftsandrelocatestotheimmunologicalsynapseunderconditionsofinhibitionofTcellactivation.J.Exp.Med.195,1337(2002).ThisstudyprovideskeyinsightsintothecompartmentalizationofCTLA4throughouttheTcellactivationcycle.CAS PubMed PubMedCentral GoogleScholar Schneider,H.etal.ReversaloftheTCRstopsignalbyCTLA-4.Science313,1972–1975(2006).CAS PubMed GoogleScholar Qureshi,O.S.etal.Trans-endocytosisofCD80andCD86:amolecularbasisforthecell-extrinsicfunctionofCTLA-4.Science332,600–603(2011).Thisstudynominatestrans-endocytosisofCD80andCD86asacell-extrinsicmechanismofCTLA4-mediatedinhibitionofTcellactivation.CAS PubMed PubMedCentral GoogleScholar Greenwald,R.J.,Boussiotis,V.A.,Lorsbach,R.B.,Abbas,A.K.&Sharpe,A.H.CTLA-4regulatesinductionofanergyinvivo.Immunity14,145–155(2001).UsingTCRtransgenicmice,thisstudyprovidesimportantinvivoevidencethatCTLA4isessentialforTcelltolerancebyregulatingentranceintotheanergicstate.CAS PubMed GoogleScholar Chuang,E.etal.RegulationofcytotoxicTlymphocyte-associatedmolecule-4bySrckinases.J.Immunol.162,1270–1277(1999).CAS PubMed GoogleScholar Marengere,L.E.etal.RegulationofTcellreceptorsignalingbytyrosinephosphataseSYPassociationwithCTLA-4.Science272,1170–1173(1996).CAS PubMed GoogleScholar Chuang,E.etal.TheCD28andCTLA-4receptorsassociatewiththeserine/threoninephosphatasePP2A.Immunity13,313–322(2000).CAS PubMed GoogleScholar Fraser,J.H.,Rincon,M.,McCoy,K.D.&LeGros,G.CTLA4ligationattenuatesAP-1,NFATandNF-κBactivityinactivatedTcells.Eur.J.Immunol.29,838–844(1999).CAS PubMed GoogleScholar Jain,N.,Nguyen,H.,Chambers,C.&Kang,J.DualfunctionofCTLA-4inregulatoryTcellsandconventionalTcellstopreventmultiorganautoimmunity.Proc.NatlAcad.Sci.USA107,1524–1528(2010).CAS PubMed PubMedCentral GoogleScholar Wing,K.etal.CTLA-4controloverFoxp3+regulatoryTcellfunction.Science322,271–275(2008).CAS PubMed GoogleScholar Takahashi,T.etal.Immunologicself-tolerancemaintainedbyCD25+CD4+regulatoryTcellsconstitutivelyexpressingcytotoxicTlymphocyte-associatedantigen4.J.Exp.Med.192,303–310(2000).CAS PubMed PubMedCentral GoogleScholar Tai,X.etal.BasisofCTLA-4functioninregulatoryandconventionalCD4+Tcells.Blood119,5155–5163(2012).ThisstudydemonstratesthatCTLA4expressionwithinregulatoryTcellsisessentialforthecharacteristicsuppressivefunctionsofthesecellsontheimmuneresponse.CAS PubMed PubMedCentral GoogleScholar Walker,L.S.K.TregandCTLA-4:twointertwiningpathwaystoimmunetolerance.J.Autoimmunity45,49–57(2013).CAS GoogleScholar Chikuma,S.&Bluestone,J.A.ExpressionofCTLA-4andFOXP3incisprotectsfromlethallymphoproliferativedisease.Eur.J.Immunol.37,1285–1289(2007).CAS PubMed GoogleScholar Read,S.etal.BlockadeofCTLA-4onCD4+CD25+regulatoryTcellsabrogatestheirfunctioninvivo.J.Immunol.177,4376–4383(2006).CAS PubMed GoogleScholar Read,S.,Malmström,V.&Powrie,F.CytotoxicTlymphocyte-associatedantigen4playsanessentialroleinthefunctionofCD25+CD4+regulatorycellsthatcontrolintestinalinflammation.J.Exp.Med.192,295–302(2000).CAS PubMed PubMedCentral GoogleScholar Friedline,R.H.etal.CD4+regulatoryTcellsrequireCTLA-4forthemaintenanceofsystemictolerance.J.Exp.Med.206,421–434(2009).CAS PubMed PubMedCentral GoogleScholar Sojka,D.K.,Hughson,A.&Fowell,D.J.CTLA-4isrequiredbyCD4+CD25+TregtocontrolCD4+T-celllymphopenia-inducedproliferation.Eur.J.Immunol.39,1544–1551(2009).CAS PubMed PubMedCentral GoogleScholar Hou,T.Z.etal.AtransendocytosismodelofCTLA-4functionpredictsitssuppressivebehavioronregulatoryTcells.J.Immunol.194,2148–2159(2015).CAS PubMed GoogleScholar Grosso,J.F.&Jure-Kunkel,M.N.CTLA-4blockadeintumormodels:anoverviewofpreclinicalandtranslationalresearch.CancerImmun.13,5(2013).PubMed PubMedCentral GoogleScholar Leach,D.R.,Krummel,M.F.&Allison,J.P.EnhancementofantitumorimmunitybyCTLA-4blockade.Science271,1734–1736(1996).ThisstudyelegantlyshowsthatCTLA4blockadeinvivocanenhanceimmune-mediatedantitumouralresponsesinmultipletumourmodelsthatultimatelypersistuponrechallenge.CAS PubMed GoogleScholar Kwon,E.D.etal.ManipulationofTcellcostimulatoryandinhibitorysignalsforimmunotherapyofprostatecancer.Proc.NatlAcad.Sci.USA94,8099–8103(1997).CAS PubMed PubMedCentral GoogleScholar Fecci,P.E.etal.SystemicCTLA-4blockadeamelioratesglioma-inducedchangestotheCD4+TcellcompartmentwithoutaffectingregulatoryT-cellfunction.Clin.CancerRes.13,2158–2167(2007).CAS PubMed GoogleScholar Yang,Y.F.etal.EnhancedinductionofantitumorT-cellresponsesbycytotoxicTlymphocyte-associatedmolecule-4blockade:theeffectismanifestedonlyattherestrictedtumor-bearingstages.CancerRes.57,4036–4041(1997).CAS PubMed GoogleScholar Mangsbo,S.M.etal.EnhancedtumoreradicationbycombiningCTLA-4orPD-1blockadewithCpGtherapy.J.Immunother.33,225–235(2010).CAS PubMed GoogleScholar Hurwitz,A.A.,Yu,T.F.Y.,Leach,D.R.&Allison,J.P.CTLA-4blockadesynergizeswithtumor-derivedgranulocyte–macrophagecolony-stimulatingfactorfortreatmentofanexperimentalmammarycarcinoma.Proc.NatlAcad.Sci.95,10067(1998).CAS PubMed PubMedCentral GoogleScholar vanElsas,A.,Hurwitz,A.A.&Allison,J.P.CombinationimmunotherapyofB16melanomausinganti-cytotoxicTlymphocyte-associatedantigen4(CTLA-4)andgranulocyte/macrophagecolony-stimulatingfactor(GM-CSF)-producingvaccinesinducesrejectionofsubcutaneousandmetastatictumorsaccompaniedbyautoimmunedepigmentation.J.Exp.Med.190,355–366(1999).PubMed PubMedCentral GoogleScholar Jure-Kunkel,M.N.,Masters,G.,Girit,E.,Dito,G.&Lee,F.Y.Antitumoractivityofanti-CTLA-4monoclonalantibody(mAb)incombinationwithixabepiloneinpreclinicaltumormodels.J.Clin.Oncol.26,3048–3048(2008). GoogleScholar Hodi,F.S.etal.BiologicactivityofcytotoxicTlymphocyte-associatedantigen4antibodyblockadeinpreviouslyvaccinatedmetastaticmelanomaandovariancarcinomapatients.Proc.NatlAcad.Sci.USA100,4712–4717(2003).CAS PubMed PubMedCentral GoogleScholar Hodi,F.S.etal.Improvedsurvivalwithipilimumabinpatientswithmetastaticmelanoma.N.Engl.J.Med.363,711–723(2010).CAS PubMed PubMedCentral GoogleScholar Schadendorf,D.etal.Pooledanalysisoflong-termsurvivaldatafromphaseIIandphaseIIItrialsofipilimumabinunresectableormetastaticmelanoma.J.Clin.Oncol.33,1889–1894(2015).Thisseminalmeta-analysisprovidesstrongclinicalevidencethatipilimumabconfersadurablesurvivalbenefittopatientswithadvancedmelanoma.CAS PubMed PubMedCentral GoogleScholar Maio,M.etal.Five-yearsurvivalratesfortreatment-naivepatientswithadvancedmelanomawhoreceivedipilimumabplusdacarbazineinaphaseIIItrial.J.Clin.Oncol.33,1191–1196(2015).CAS PubMed PubMedCentral GoogleScholar Yang,J.C.etal.Ipilimumab(anti-CTLA4antibody)causesregressionofmetastaticrenalcellcancerassociatedwithenteritisandhypophysitis.J.Immunother.30,825–830(2007).CAS PubMed PubMedCentral GoogleScholar Lynch,T.J.etal.Ipilimumabincombinationwithpaclitaxelandcarboplatinasfirst-linetreatmentinstageIIIB/IVnon-small-celllungcancer:resultsfromarandomized,double-blind,multicenterphaseIIstudy.J.Clin.Oncol.30,2046–2054(2012).CAS PubMed GoogleScholar Reck,M.etal.Ipilimumabincombinationwithpaclitaxelandcarboplatinasfirst-linetherapyinextensive-disease-small-celllungcancer:resultsfromarandomized,double-blind,multicenterphase2trial.Ann.Oncol.24,75–83(2013).CAS PubMed GoogleScholar Kwon,E.D.etal.Ipilimumabversusplaceboafterradiotherapyinpatientswithmetastaticcastration-resistantprostatecancerthathadprogressedafterdocetaxelchemotherapy(CA184-043):amulticentre,randomised,double-blind,phase3trial.LancetOncol.15,700–712(2014).CAS PubMed PubMedCentral GoogleScholar Ribas,A.etal.PhaseIIIrandomizedclinicaltrialcomparingtremelimumabwithstandard-of-carechemotherapyinpatientswithadvancedmelanoma.J.Clin.Oncol.31,616–622(2013).CAS PubMed PubMedCentral GoogleScholar Furness,A.J.,Vargas,F.A.,Peggs,K.S.&Quezada,S.A.ImpactoftumourmicroenvironmentandFcreceptorsontheactivityofimmunomodulatoryantibodies.TrendsImmunol.35,290–298(2014).CAS PubMed GoogleScholar He,M.etal.RemarkablysimilarCTLA-4bindingpropertiesoftherapeuticipilimumabandtremelimumabantibodies.Oncotarget8,67129–67139(2017).PubMed PubMedCentral GoogleScholar Baksh,K.&Weber,J.Immunecheckpointproteininhibitionforcancer:preclinicaljustificationforCTLA-4andPD-1blockadeandnewcombinations.Semin.Oncol.42,363–377(2015).CAS PubMed GoogleScholar Snyder,A.etal.GeneticbasisforclinicalresponsetoCTLA-4blockadeinmelanoma.N.Engl.J.Med.371,2189–2199(2014).PubMed PubMedCentral GoogleScholar vanRooij,N.etal.Tumorexomeanalysisrevealsneoantigen-specificT-cellreactivityinanipilimumab-responsivemelanoma.J.Clin.Oncol.31,e439–e442(2013).PubMed GoogleScholar Sharma,N.,Vacher,J.&Allison,J.P.TLR1/2ligandenhancesantitumorefficacyofCTLA-4blockadebyincreasingintratumoralTregdepletion.Proc.NatlAcad.Sci.USA116,10453(2019).CAS PubMed PubMedCentral GoogleScholar Peggs,K.S.,Quezada,S.A.,Chambers,C.A.,Korman,A.J.&Allison,J.P.BlockadeofCTLA-4onbotheffectorandregulatoryTcellcompartmentscontributestotheantitumoractivityofanti-CTLA-4antibodies.J.Exp.Med.206,1717–1725(2009).CAS PubMed PubMedCentral GoogleScholar Ha,D.etal.DifferentialcontrolofhumanTregandeffectorTcellsintumorimmunitybyFc-engineeredanti-CTLA-4antibody.Proc.NatlAcad.Sci.USA116,609(2019).CAS PubMed GoogleScholar Sharma,A.etal.Anti-CTLA-4immunotherapydoesnotdepleteFOXP3+regulatoryTcells(Tregs)inhumancancers.Clin.CancerRes.25,1233(2019).CAS PubMed GoogleScholar Ishida,Y.,Agata,Y.,Shibahara,K.&Honjo,T.InducedexpressionofPD-1,anovelmemberoftheimmunoglobulingenesuperfamily,uponprogrammedcelldeath.EMBOJ.11,3887–3895(1992).Usingsubtractivehybridization,thisstudyisthefirsttoidentifyPD1asanewimmunoglobulinsuperfamilymemberexpressedwithinthethymus.CAS PubMed PubMedCentral GoogleScholar Carreno,B.M.&Collins,M.TheB7familyofligandsanditsreceptors:newpathwaysforcostimulationandinhibitionofimmuneresponses.Annu.Rev.Immunol.20,29–53(2002).CAS PubMed GoogleScholar Latchman,Y.etal.PD-L2isasecondligandforPD-1andinhibitsTcellactivation.Nat.Immunol.2,261–268(2001).CAS PubMed GoogleScholar Francisco,L.M.,Sage,P.T.&Sharpe,A.H.ThePD-1pathwayintoleranceandautoimmunity.Immunol.Rev.236,219–242(2010).CAS PubMed PubMedCentral GoogleScholar Freeman,G.J.etal.EngagementofthePD-1immunoinhibitoryreceptorbyanovelB7familymemberleadstonegativeregulationoflymphocyteactivation.J.Exp.Med.192,1027–1034(2000).ThisstudydemonstratesthatanewB7familymember,PDL1,functionsasaligandforPD1inordertodampenTcellactivation.CAS PubMed PubMedCentral GoogleScholar Nishimura,H.,Minato,N.,Nakano,T.&Honjo,T.ImmunologicalstudiesonPD-1deficientmice:implicationofPD-1asanegativeregulatorforBcellresponses.Int.Immunol.10,1563–1572(1998).CAS PubMed GoogleScholar Nishimura,H.,Nose,M.,Hiai,H.,Minato,N.&Honjo,T.Developmentoflupus-likeautoimmunediseasesbydisruptionofthePD-1geneencodinganITIMmotif-carryingimmunoreceptor.Immunity11,141–151(1999).CAS PubMed GoogleScholar Nishimura,H.etal.AutoimmunedilatedcardiomyopathyinPD-1receptor-deficientmice.Science291,319–322(2001).CAS PubMed GoogleScholar Wang,J.etal.EstablishmentofNOD-Pdcd1–/–miceasanefficientanimalmodeloftypeIdiabetes.Proc.NatlAcad.Sci.USA102,11823–11828(2005).CAS PubMed PubMedCentral GoogleScholar Keir,M.E.,Butte,M.J.,Freeman,G.J.&Sharpe,A.H.PD-1anditsligandsintoleranceandimmunity.Annu.Rev.Immunol.26,677–704(2008).CAS PubMed GoogleScholar Hui,E.etal.TcellcostimulatoryreceptorCD28isaprimarytargetforPD-1-mediatedinhibition.Science355,1428–1433(2017).ThisstudyhighlightsthecentralroleofCD28dephosphorylationinmediatingthenegativeregulatoryeffectofPD1-mediatedTcellinhibition.CAS PubMed PubMedCentral GoogleScholar Parry,R.V.etal.CTLA-4andPD-1receptorsinhibitT-cellactivationbydistinctmechanisms.Mol.CellBiol.25,9543–9553(2005).ThisstudydemonstratesthecomplementarywaysinwhichCTLA4andPD1inhibitproteinkinaseBsignallingtoreduceglucoseuptakeandutilization.CAS PubMed PubMedCentral GoogleScholar Wei,S.C.etal.Distinctcellularmechanismsunderlieanti-CTLA-4andanti-PD-1checkpointblockade.Cell170,1120–1133.e17(2017).CAS PubMed PubMedCentral GoogleScholar Barber,D.L.etal.RestoringfunctioninexhaustedCD8Tcellsduringchronicviralinfection.Nature439,682–687(2006).CAS PubMed GoogleScholar Blank,C.etal.PD-L1/B7H-1inhibitstheeffectorphaseoftumorrejectionbyTcellreceptor(TCR)transgenicCD8+Tcells.CancerRes.64,1140–1145(2004).CAS PubMed GoogleScholar Francisco,L.M.etal.PD-L1regulatesthedevelopment,maintenance,andfunctionofinducedregulatoryTcells.J.Exp.Med.206,3015–3029(2009).CAS PubMed PubMedCentral GoogleScholar Wherry,E.J.&Kurachi,M.MolecularandcellularinsightsintoTcellexhaustion.Nat.Rev.Immunol.15,486–499(2015).CAS PubMed PubMedCentral GoogleScholar Hirano,F.etal.BlockadeofB7-H1andPD-1bymonoclonalantibodiespotentiatescancertherapeuticimmunity.CancerRes.65,1089–1096(2005).ThispreclinicalmurinestudyshowsthatblockadeofPD1orPDL1couldreverseinherentresistanceoftumourstocytolysisbyTcells.CAS PubMed GoogleScholar Iwai,Y.etal.InvolvementofPD-L1ontumorcellsintheescapefromhostimmunesystemandtumorimmunotherapybyPD-L1blockade.Proc.NatlAcad.Sci.USA99,12293–12297(2002).ThisstudyshowsthatPDL1expressionbytumourcellsrepresentsamechanismofresistancetoimmune-mediatedcytolysisthatcanbeabrogatedbyblockadeofthePD1axis.CAS PubMed PubMedCentral GoogleScholar Strome,S.E.etal.B7-H1blockadeaugmentsadoptiveT-cellimmunotherapyforsquamouscellcarcinoma.CancerRes.63,6501–6505(2003).CAS PubMed GoogleScholar He,Y.F.etal.Blockingprogrammeddeath-1ligand–PD-1interactionsbylocalgenetherapyresultsinenhancementofantitumoreffectofsecondarylymphoidtissuechemokine.J.Immunol.173,4919–4928(2004).CAS PubMed GoogleScholar Kamphorst,A.O.etal.RescueofexhaustedCD8TcellsbyPD-1-targetedtherapiesisCD28-dependent.Science355,1423–1427(2017).CAS PubMed PubMedCentral GoogleScholar Iwai,Y.,Terawaki,S.&Honjo,T.PD-1blockadeinhibitshematogenousspreadofpoorlyimmunogenictumorcellsbyenhancedrecruitmentofeffectorTcells.Int.Immunol.17,133–144(2005).Beyondenhancingantitumouralimmunity,thisstudydemonstratesthatPD1blockadecanlimittumourmetastaticpotential.CAS PubMed GoogleScholar Hamanishi,J.etal.Programmedcelldeath1ligand1andtumor-infiltratingCD8+Tlymphocytesareprognosticfactorsofhumanovariancancer.Proc.NatlAcad.Sci.USA104,3360–3365(2007).CAS PubMed PubMedCentral GoogleScholar Thompson,R.H.etal.PD-1isexpressedbytumor-infiltratingimmunecellsandisassociatedwithpooroutcomeforpatientswithrenalcellcarcinoma.Clin.CancerRes.13,1757–1761(2007).CAS PubMed GoogleScholar Thompson,R.H.etal.TumorB7-H1isassociatedwithpoorprognosisinrenalcellcarcinomapatientswithlong-termfollow-up.CancerRes.66,3381–3385(2006).AlongwithThompsonetal.(2007)andHamanishietal.(2007),thisstudyshowsthatexpressionofPD1ontumour-infiltratingTcellsandPD1ligandsontumoursarepoorprognosticmarkersinvariouscancers.CAS PubMed GoogleScholar Hargadon,K.M.,Johnson,C.E.&Williams,C.J.Immunecheckpointblockadetherapyforcancer:anoverviewofFDA-approvedimmunecheckpointinhibitors.Int.Immunopharmacol.62,29–39(2018).CAS PubMed GoogleScholar Berman,D.etal.Thedevelopmentofimmunomodulatorymonoclonalantibodiesasanewtherapeuticmodalityforcancer:theBristol-MyersSquibbexperience.Pharmacol.Ther.148,132–153(2015).CAS PubMed GoogleScholar Brahmer,J.R.etal.PhaseIstudyofsingle-agentanti-programmeddeath-1(MDX-1106)inrefractorysolidtumors:safety,clinicalactivity,pharmacodynamics,andimmunologiccorrelates.J.Clin.Oncol.28,3167–3175(2010).CAS PubMed PubMedCentral GoogleScholar Gong,J.,Chehrazi-Raffle,A.,Reddi,S.&Salgia,R.DevelopmentofPD-1andPD-L1inhibitorsasaformofcancerimmunotherapy:acomprehensivereviewofregistrationtrialsandfutureconsiderations.J.Immunother.Cancer6,8(2018).PubMed PubMedCentral GoogleScholar Weber,J.S.etal.Nivolumabversuschemotherapyinpatientswithadvancedmelanomawhoprogressedafteranti-CTLA-4treatment(CheckMate037):arandomised,controlled,open-label,phase3trial.LancetOncol.16,375–384(2015).CAS PubMed GoogleScholar Weber,J.etal.AdjuvantnivolumabversusipilimumabinresectedstageIIIorIVmelanoma.N.Engl.J.Med.377,1824–1835(2017).CAS PubMed GoogleScholar Robert,C.etal.NivolumabinpreviouslyuntreatedmelanomawithoutBRAFmutation.N.Engl.J.Med.372,320–330(2015).CAS PubMed GoogleScholar Robert,C.etal.Pembrolizumabversusipilimumabinadvancedmelanoma.N.Engl.J.Med.372,2521–2532(2015).ThisphaseIIIclinicalstudyinadvancedmelanomapatientsshowsthatPD1blockadewasmoreefficaciousandresultedinlesstoxicitythananti-CTLA4therapy.CAS PubMed GoogleScholar Schachter,J.etal.Pembrolizumabversusipilimumabforadvancedmelanoma:finaloverallsurvivalresultsofamulticentre,randomised,open-labelphase3study(KEYNOTE-006).Lancet390,1853–1862(2017).CAS PubMed GoogleScholar Herbst,R.S.etal.Pembrolizumabversusdocetaxelforpreviouslytreated,PD-L1-positive,advancednon-small-celllungcancer(KEYNOTE-010):arandomisedcontrolledtrial.Lancet387,1540–1550(2016).CAS PubMed GoogleScholar Reck,M.etal.PembrolizumabversuschemotherapyforPD-L1-positivenon-small-celllungcancer.N.Engl.J.Med.375,1823–1833(2016).CAS PubMed GoogleScholar Garon,E.B.etal.Pembrolizumabforthetreatmentofnon-small-celllungcancer.N.Engl.J.Med.372,2018–2028(2015).PubMed GoogleScholar Cohen,E.E.W.etal.Pembrolizumabversusmethotrexate,docetaxel,orcetuximabforrecurrentormetastatichead-and-necksquamouscellcarcinoma(KEYNOTE-040):arandomised,open-label,phase3study.Lancet393,156–167(2019).CAS PubMed GoogleScholar Moskowitz,C.H.etal.Pembrolizumabinrelapsed/refractoryclassicalHodgkinlymphoma:primaryendpointanalysisofthephase2KEYNOTE-087study.Blood128,1107(2016). GoogleScholar Bellmunt,J.etal.Pembrolizumabassecond-linetherapyforadvancedurothelialcarcinoma.N.Engl.J.Med.376,1015–1026(2017).CAS PubMed PubMedCentral GoogleScholar Fuchs,C.S.etal.Safetyandefficacyofpembrolizumabmonotherapyinpatientswithpreviouslytreatedadvancedgastricandgastroesophagealjunctioncancer:phase2clinicalKEYNOTE-059trial.JAMAOncol.4,e180013(2018).PubMed PubMedCentral GoogleScholar Boyiadzis,M.M.etal.SignificanceandimplicationsofFDAapprovalofpembrolizumabforbiomarker-defineddisease.J.Immunother.Cancer6,35(2018).PubMed PubMedCentral GoogleScholar Ding,L.&Chen,F.PredictingtumorresponsetoPD-1blockade.N.Engl.J.Med.381,477–479(2019).PubMed GoogleScholar Prasad,V.,Kaestner,V.&Mailankody,S.Cancerdrugsapprovedbasedonbiomarkersandnottumortype—FDAapprovalofpembrolizumabformismatchrepair-deficientsolidcancers.JAMAOncol.4,157–158(2018).PubMed GoogleScholar Motzer,R.J.etal.Nivolumabversuseverolimusinadvancedrenal-cellcarcinoma.N.Engl.J.Med.373,1803–1813(2015).CAS PubMed PubMedCentral GoogleScholar Ferris,R.L.etal.Nivolumabforrecurrentsquamous-cellcarcinomaoftheheadandneck.N.Engl.J.Med.375,1856–1867(2016).PubMed PubMedCentral GoogleScholar Sharma,P.etal.Nivolumabinmetastaticurothelialcarcinomaafterplatinumtherapy(CheckMate275):amulticentre,single-arm,phase2trial.LancetOncol.18,312–322(2017).CAS PubMed GoogleScholar El-Khoueiry,A.B.etal.Nivolumabinpatientswithadvancedhepatocellularcarcinoma(CheckMate040):anopen-label,non-comparative,phase1/2doseescalationandexpansiontrial.Lancet389,2492–2502(2017).CAS PubMed PubMedCentral GoogleScholar Ansell,S.M.etal.PD-1blockadewithnivolumabinrelapsedorrefractoryHodgkin’slymphoma.N.Engl.J.Med.372,311–319(2015).PubMed GoogleScholar Overman,M.J.etal.NivolumabinpatientswithmetastaticDNAmismatchrepair-deficientormicrosatelliteinstability-highcolorectalcancer(CheckMate142):anopen-label,multicentre,phase2study.LancetOncol.18,1182–1191(2017).CAS PubMed PubMedCentral GoogleScholar Topalian,S.L.etal.Five-yearsurvivalandcorrelatesamongpatientswithadvancedmelanoma,renalcellcarcinoma,ornon-smallcelllungcancertreatedwithnivolumab.JAMAOncol.5,1411–1420(2019).PubMedCentral PubMed GoogleScholar Dong,H.etal.Tumor-associatedB7-H1promotesT-cellapoptosis:apotentialmechanismofimmuneevasion.Nat.Med.8,793–800(2002).CAS PubMed GoogleScholar Rosenberg,J.E.etal.Atezolizumabinpatientswithlocallyadvancedandmetastaticurothelialcarcinomawhohaveprogressedfollowingtreatmentwithplatinum-basedchemotherapy:asingle-arm,multicentre,phase2trial.Lancet387,1909–1920(2016).CAS PubMed PubMedCentral GoogleScholar Powles,T.etal.Atezolizumabversuschemotherapyinpatientswithplatinum-treatedlocallyadvancedormetastaticurothelialcarcinoma(IMvigor211):amulticentre,open-label,phase3randomisedcontrolledtrial.Lancet391,748–757(2018).CAS PubMed GoogleScholar Rittmeyer,A.etal.Atezolizumabversusdocetaxelinpatientswithpreviouslytreatednon-small-celllungcancer(OAK):aphase3,open-label,multicentrerandomisedcontrolledtrial.Lancet389,255–265(2017).PubMed GoogleScholar Schmid,P.etal.Atezolizumabandnab-paclitaxelinadvancedtriple-negativebreastcancer.N.Engl.J.Med.379,2108–2121(2018).CAS PubMed GoogleScholar Horn,L.etal.First-lineatezolizumabpluschemotherapyinextensive-stagesmall-celllungcancer.N.Engl.J.Med.379,2220–2229(2018).CAS PubMed GoogleScholar Kaufman,H.L.etal.Avelumabinpatientswithchemotherapy-refractorymetastaticMerkelcellcarcinoma:amulticentre,single-group,open-label,phase2trial.LancetOncol.17,1374–1385(2016).CAS PubMed PubMedCentral GoogleScholar Patel,M.R.etal.Avelumabinmetastaticurothelialcarcinomaafterplatinumfailure(JAVELINSolidTumor):pooledresultsfromtwoexpansioncohortsofanopen-label,phase1trial.LancetOncol.19,51–64(2018).CAS PubMed GoogleScholar Motzer,R.J.etal.Avelumabplusaxitinibversussunitinibforadvancedrenal-cellcarcinoma.N.Engl.J.Med.380,1103–1115(2019).CAS PubMed PubMedCentral GoogleScholar Powles,T.etal.Efficacyandsafetyofdurvalumabinlocallyadvancedormetastaticurothelialcarcinoma:updatedresultsfromaphase1/2open-labelstudy.JAMAOncol.3,e172411(2017).PubMed PubMedCentral GoogleScholar Antonia,S.J.etal.DurvalumabafterchemoradiotherapyinstageIIInon-small-celllungcancer.N.Engl.J.Med.377,1919–1929(2017).CAS PubMed GoogleScholar Fritz,J.M.&Lenardo,M.J.Developmentofimmunecheckpointtherapyforcancer.J.Exp.Med.216,1244–1254(2019).CAS PubMed PubMedCentral GoogleScholar Michot,J.M.etal.Immune-relatedadverseeventswithimmunecheckpointblockade:acomprehensivereview.Eur.J.Cancer54,139–148(2016).CAS PubMed GoogleScholar Kumar,V.etal.Currentdiagnosisandmanagementofimmunerelatedadverseevents(irAEs)inducedbyimmunecheckpointinhibitortherapy.Front.Pharmacol.8,49(2017).Thiscomprehensivereviewdescribesthediagnosisofthecommonimmune-relatedadverseeventsobservedinpatientstreatedwithimmunecheckpointinhibitorsandthesubsequentclinicalmanagementofthesesideeffects.CAS PubMed PubMedCentral GoogleScholar Postow,M.A.,Sidlow,R.&Hellmann,M.D.Immune-relatedadverseeventsassociatedwithimmunecheckpointblockade.N.Engl.J.Med.378,158–168(2018).CAS PubMed GoogleScholar Wang,P.-F.etal.Immune-relatedadverseeventsassociatedwithanti-PD-1/PD-L1treatmentformalignancies:ameta-analysis.Front.Pharmacol.8,730(2017).PubMed PubMedCentral GoogleScholar Champiat,S.etal.Hyperprogressivediseaseisanewpatternofprogressionincancerpatientstreatedbyanti-PD-1/PD-L1.Clin.CancerRes.23,1920–1928(2017).CAS PubMed GoogleScholar Saada-Bouzid,E.etal.Hyperprogressionduringanti-PD-1/PD-L1therapyinpatientswithrecurrentand/ormetastaticheadandnecksquamouscellcarcinoma.Ann.Oncol.28,1605–1611(2017).CAS PubMed GoogleScholar Ferrara,R.etal.Hyperprogressivediseaseinpatientswithadvancednon-smallcelllungcancertreatedwithPD-1/PD-L1inhibitorsorwithsingle-agentchemotherapy.JAMAOncol.4,1543–1552(2018).PubMed PubMedCentral GoogleScholar Rauch,D.A.etal.RapidprogressionofadultT-cellleukemia/lymphomaastumor-infiltratingTregsafterPD-1blockade.Blood134,1406–1414(2019).PubMed PubMedCentral GoogleScholar Tazdait,M.etal.PatternsofresponsesinmetastaticNSCLCduringPD-1orPDL-1inhibitortherapy:comparisonofRECIST1.1,irRECISTandiRECISTcriteria.Eur.J.Cancer88,38–47(2018).CAS PubMed GoogleScholar Champiat,S.etal.Hyperprogressivedisease:recognizinganovelpatterntoimprovepatientmanagement.Nat.Rev.Clin.Oncol.15,748–762(2018).CAS PubMed GoogleScholar Liu,J.,Blake,S.J.,Smyth,M.J.&Teng,M.W.ImprovedmousemodelstoassesstumourimmunityandirAEsaftercombinationcancerimmunotherapies.Clin.TranslImmunol.3,e22(2014). GoogleScholar Du,X.etal.AreappraisalofCTLA-4checkpointblockadeincancerimmunotherapy.CellRes.28,416–432(2018).CAS PubMed PubMedCentral GoogleScholar Nishijima,T.F.,Shachar,S.S.,Nyrop,K.A.&Muss,H.B.SafetyandtolerabilityofPD-1/PD-L1inhibitorscomparedwithchemotherapyinpatientswithadvancedcancer:ameta-analysis.Oncologist22,470–479(2017).CAS PubMed PubMedCentral GoogleScholar Zhang,Y.etal.Hijackingantibody-inducedCTLA-4lysosomaldegradationforsaferandmoreeffectivecancerimmunotherapy.CellRes.29,609–627(2019).CAS PubMed PubMedCentral GoogleScholar Liu,Y.&Zheng,P.PreservingtheCTLA-4checkpointforsaferandmoreeffectivecancerimmunotherapy.TrendsPharmacol.Sci.41,4–12(2020).CAS PubMed GoogleScholar Riley,R.S.,June,C.H.,Langer,R.&Mitchell,M.J.Deliverytechnologiesforcancerimmunotherapy.Nat.Rev.Drug.Discov.18,175–196(2019).CAS PubMed PubMedCentral GoogleScholar Friedman,C.F.,Proverbs-Singh,T.A.&Postow,M.A.Treatmentoftheimmune-relatedadverseeffectsofimmunecheckpointinhibitors:areview.JAMAOncol.2,1346–1353(2016).PubMed GoogleScholar Shahabi,V.etal.Geneexpressionprofilingofwholebloodinipilimumab-treatedpatientsforidentificationofpotentialbiomarkersofimmune-relatedgastrointestinaladverseevents.J.TranslMed.11,75(2013).CAS PubMed PubMedCentral GoogleScholar Callahan,M.K.etal.EvaluationofserumIL-17levelsduringipilimumabtherapy:correlationwithcolitis.J.Clin.Oncol.29,2505–2505(2011). GoogleScholar Schindler,K.etal.Correlationofabsoluteandrelativeeosinophilcountswithimmune-relatedadverseeventsinmelanomapatientstreatedwithipilimumab.J.Clin.Oncol.32,9096(2014). GoogleScholar Southam,C.M.,Brunschwig,A.,Levin,A.G.&Dizon,Q.S.Effectofleukocytesontransplantabilityofhumancancer.Cancer19,1743–1753(1966).Thisclinicalstudyisthefirsttodemonstratetheviabilityofusingpatient-derivedleukocytesandautologoustumourcellstopromotecancerregression.CAS PubMed GoogleScholar Weiden,P.L.etal.Antileukemiceffectofgraft-versus-hostdiseaseinhumanrecipientsofallogeneic-marrowgrafts.N.Engl.J.Med.300,1068–1073(1979).CAS PubMed GoogleScholar Rosenberg,S.A.etal.Useoftumor-infiltratinglymphocytesandinterleukin-2intheimmunotherapyofpatientswithmetastaticmelanoma.Apreliminaryreport.N.Engl.J.Med.319,1676–1680(1988).CAS PubMed GoogleScholar Rosenberg,S.A.etal.Treatmentofpatientswithmetastaticmelanomawithautologoustumor-infiltratinglymphocytesandinterleukin2.J.NatlCancerInst.86,1159–1166(1994).CAS PubMed GoogleScholar Rosenberg,S.A.etal.DurablecompleteresponsesinheavilypretreatedpatientswithmetastaticmelanomausingT-celltransferimmunotherapy.Clin.CancerRes.17,4550–4557(2011).ThisstudyexpandsontheclinicalsuccessofIL-2-expandedtumour-infiltratinglymphocytesincancertreatmentthroughtheadditionoflymphodepletionbeforeadministrationofthecellulartherapy.CAS PubMed PubMedCentral GoogleScholar Zacharakis,N.etal.Immunerecognitionofsomaticmutationsleadingtocompletedurableregressioninmetastaticbreastcancer.Nat.Med.24,724–730(2018).CAS PubMed PubMedCentral GoogleScholar Palmer,D.C.etal.CishactivelysilencesTCRsignalinginCD8+Tcellstomaintaintumortolerance.J.Exp.Med.212,2095(2015).CAS PubMed PubMedCentral GoogleScholar Perica,K.,Varela,J.C.,Oelke,M.&Schneck,J.AdoptiveTcellimmunotherapyforcancer.RambamMaimonidesMed.J.6,e0004(2015).PubMed PubMedCentral GoogleScholar Garrido,F.,Aptsiauri,N.,Doorduijn,E.M.,GarciaLora,A.M.&vanHall,T.TheurgentneedtorecoverMHCclassIincancersforeffectiveimmunotherapy.Curr.Opin.Immunol.39,44–51(2016).CAS PubMed PubMedCentral GoogleScholar Kuwana,Y.etal.Expressionofchimericreceptorcomposedofimmunoglobulin-derivedVregionsandT-cellreceptor-derivedCregions.Biochem.Biophys.Res.Commun.149,960–968(1987).CAS PubMed GoogleScholar Brocker,T.ChimericFv-ζorFv-εreceptorsarenotsufficienttoinduceactivationorcytokineproductioninperipheralTcells.Blood96,1999–2001(2000).CAS PubMed GoogleScholar Jensen,M.C.etal.AntitransgenerejectionresponsescontributetoattenuatedpersistenceofadoptivelytransferredCD20/CD19-specificchimericantigenreceptorredirectedTcellsinhumans.Biol.BloodMarrowTranspl.16,1245–1256(2010).CAS GoogleScholar Maher,J.,Brentjens,R.J.,Gunset,G.,Riviere,I.&Sadelain,M.HumanT-lymphocytecytotoxicityandproliferationdirectedbyasinglechimericTCRζ/CD28receptor.Nat.Biotechnol.20,70–75(2002).ThispreclinicalstudyhighlightsanincreasedefficacyofCARTcellsthatincludesaco-stimulatorydomaincomparedwiththeCD3ζ-chainalone.CAS PubMed GoogleScholar Kuhn,N.F.etal.CD40ligand-modifiedchimericantigenreceptorTcellsenhanceantitumorfunctionbyelicitinganendogenousantitumorresponse.CancerCell35,473–488.e6(2019).CAS PubMed PubMedCentral GoogleScholar Finney,H.M.,Akbar,A.N.&Lawson,A.D.ActivationofrestinghumanprimaryTcellswithchimericreceptors:costimulationfromCD28,induciblecostimulator,CD134,andCD137inserieswithsignalsfromtheTCRζchain.J.Immunol.172,104–113(2004).CAS PubMed GoogleScholar Imai,C.etal.Chimericreceptorswith4-1BBsignalingcapacityprovokepotentcytotoxicityagainstacutelymphoblasticleukemia.Leukemia18,676–684(2004).CAS PubMed GoogleScholar Rafiq,S.etal.TargeteddeliveryofaPD-1-blockingscFvbyCAR-Tcellsenhancesanti-tumorefficacyinvivo.Nat.Biotechnol.36,847–856(2018).CAS PubMed PubMedCentral GoogleScholar Eyquem,J.etal.TargetingaCARtotheTRAClocuswithCRISPR/Cas9enhancestumourrejection.Nature543,113–117(2017).CAS PubMed PubMedCentral GoogleScholar Porter,D.L.,Levine,B.L.,Kalos,M.,Bagg,A.&June,C.H.Chimericantigenreceptor-modifiedTcellsinchroniclymphoidleukemia.N.Engl.J.Med.365,725–733(2011).ThispilotclinicalstudydemonstratesthefeasibilityandpreliminaryefficacyofCD19-directedCARTcellsinchroniclymphocyticleukaemia.CAS PubMed PubMedCentral GoogleScholar Brentjens,R.J.etal.CD19-targetedTcellsrapidlyinducemolecularremissionsinadultswithchemotherapy-refractoryacutelymphoblasticleukemia.Sci.TranslMed.5,177ra138(2013).Beyondchroniclymphocyticleukaemia,thisclinicaltrialdemonstratesthatCD19-directedCARTcellscouldinduceremissionintheacuteformofthedisease.CAS Article GoogleScholar Park,J.H.etal.Long-termfollow-upofCD19CARtherapyinacutelymphoblasticleukemia.N.Engl.J.Med.378,449–459(2018).CAS PubMed PubMedCentral GoogleScholar Neelapu,S.S.etal.AxicabtageneciloleucelCART-celltherapyinrefractorylargeB-celllymphoma.N.Engl.J.Med.377,2531–2544(2017).CAS PubMed PubMedCentral GoogleScholar Fry,T.J.etal.CD22-targetedCARTcellsinduceremissioninB-ALLthatisnaiveorresistanttoCD19-targetedCARimmunotherapy.Nat.Med.24,20–28(2018).CAS PubMed GoogleScholar Jackson,H.J.,Rafiq,S.&Brentjens,R.J.DrivingCART-cellsforward.Nat.Rev.Clin.Oncol.13,370–383(2016).CAS PubMed PubMedCentral GoogleScholar Yamamoto,T.N.,Kishton,R.J.&Restifo,N.P.Developingneoantigen-targetedTcell-basedtreatmentsforsolidtumors.Nat.Med.25,1488–1499(2019).CAS PubMed GoogleScholar Raje,N.etal.Anti-BCMACART-celltherapybb2121inrelapsedorrefractorymultiplemyeloma.N.Engl.J.Med.380,1726–1737(2019).CAS PubMed PubMedCentral GoogleScholar Cohen,A.D.etal.Bcellmaturationantigen-specificCARTcellsareclinicallyactiveinmultiplemyeloma.J.Clin.Invest.129,2210–2221(2019).PubMed PubMedCentral GoogleScholar Smith,E.L.etal.GPRC5DisatargetfortheimmunotherapyofmultiplemyelomawithrationallydesignedCARTcells.Sci.TranslMed.11,eaau7746(2019).PubMed PubMedCentral GoogleScholar Beatty,G.L.etal.Mesothelin-specificchimericantigenreceptormRNA-engineeredTcellsinduceanti-tumoractivityinsolidmalignancies.CancerImmunol.Res.2,112–120(2014).CAS PubMed GoogleScholar Kershaw,M.H.etal.AphaseIstudyonadoptiveimmunotherapyusinggene-modifiedTcellsforovariancancer.Clin.CancerRes.12,6106–6115(2006).CAS PubMed PubMedCentral GoogleScholar Park,J.R.etal.Adoptivetransferofchimericantigenreceptorre-directedcytolyticTlymphocyteclonesinpatientswithneuroblastoma.Mol.Ther.15,825–833(2007).CAS PubMed GoogleScholar Majzner,R.G.etal.CARTcellstargetingB7-H3,apan-cancerantigen,demonstratepotentpreclinicalactivityagainstpediatricsolidtumorsandbraintumors.Clin.CancerRes.25,2560–2574(2019).CAS PubMed PubMedCentral GoogleScholar Batchu,R.B.etal.Inhibitionofinterleukin-10inthetumormicroenvironmentcanrestoremesothelinchimericantigenreceptorTcellactivityinpancreaticcancerinvitro.Surgery163,627–632(2018).PubMed GoogleScholar Chang,Z.L.etal.RewiringT-cellresponsestosolublefactorswithchimericantigenreceptors.Nat.Chem.Biol.14,317–324(2018).CAS PubMed PubMedCentral GoogleScholar Zhao,J.,Zhao,J.&Perlman,S.DifferentialeffectsofIL-12onTregsandnon-TregTcells:rolesofIFN-γ,IL-2andIL-2R.PLoSOne7,e46241(2012).CAS PubMed PubMedCentral GoogleScholar Chmielewski,M.,Kopecky,C.,Hombach,A.A.&Abken,H.IL-12releasebyengineeredTcellsexpressingchimericantigenreceptorscaneffectivelymusteranantigen-independentmacrophageresponseontumorcellsthathaveshutdowntumorantigenexpression.CancerRes.71,5697–5706(2011).CAS PubMed GoogleScholar Kerkar,S.P.etal.IL-12triggersaprogrammaticchangeindysfunctionalmyeloid-derivedcellswithinmousetumors.J.Clin.Invest.121,4746–4757(2011).CAS PubMed PubMedCentral GoogleScholar Koneru,M.,Purdon,T.J.,Spriggs,D.,Koneru,S.&Brentjens,R.J.IL-12secretingtumor-targetedchimericantigenreceptorTcellseradicateovariantumorsinvivo.Oncoimmunology4,e994446(2015).PubMed PubMedCentral GoogleScholar Yeku,O.O.,Purdon,T.J.,Koneru,M.,Spriggs,D.&Brentjens,R.J.ArmoredCARTcellsenhanceantitumorefficacyandovercomethetumormicroenvironment.Sci.Rep.7,10541(2017).PubMed PubMedCentral GoogleScholar Koneru,M.,O’Cearbhaill,R.,Pendharkar,S.,Spriggs,D.R.&Brentjens,R.J.AphaseIclinicaltrialofadoptiveTcelltherapyusingIL-12secretingMUC-16ectodirectedchimericantigenreceptorsforrecurrentovariancancer.J.TranslMed.13,102(2015).PubMed PubMedCentral GoogleScholar Wilkie,S.etal.Selectiveexpansionofchimericantigenreceptor-targetedT-cellswithpotenteffectorfunctionusinginterleukin-4.J.Biol.Chem.285,25538–25544(2010).CAS PubMed PubMedCentral GoogleScholar vanSchalkwyk,M.C.etal.DesignofaphaseIclinicaltrialtoevaluateintratumoraldeliveryofErbB-targetedchimericantigenreceptorT-cellsinlocallyadvancedorrecurrentheadandneckcancer.Hum.GeneTher.Clin.Dev.24,134–142(2013).PubMed GoogleScholar Lynn,R.C.etal.c-JunoverexpressioninCARTcellsinducesexhaustionresistance.Nature576,293–300(2019).CAS PubMed PubMedCentral GoogleScholar Brudno,J.N.&Kochenderfer,J.N.ToxicitiesofchimericantigenreceptorTcells:recognitionandmanagement.Blood127,3321–3330(2016).ThisreviewdetailstheadverseeffectsassociatedwithCARTcelltherapyandtheirsubsequentclinicalmanagement.CAS PubMed PubMedCentral GoogleScholar Neelapu,S.S.etal.ChimericantigenreceptorT-celltherapy—assessmentandmanagementoftoxicities.Nat.Rev.Clin.Oncol.15,47–62(2018).CAS PubMed GoogleScholar Shimabukuro-Vornhagen,A.etal.Cytokinereleasesyndrome.J.Immunother.Cancer6,56(2018).PubMed PubMedCentral GoogleScholar Grupp,S.A.etal.Chimericantigenreceptor-modifiedTcellsforacutelymphoidleukemia.N.Engl.J.Med.368,1509–1518(2013).CAS PubMed PubMedCentral GoogleScholar Conley,M.E.etal.PrimaryBcellimmunodeficiencies:comparisonsandcontrasts.Annu.Rev.Immunol.27,199–227(2009).CAS PubMed GoogleScholar Giavridis,T.etal.CARTcell-inducedcytokinereleasesyndromeismediatedbymacrophagesandabatedbyIL-1blockade.Nat.Med.24,731–738(2018).CAS PubMed PubMedCentral GoogleScholar Ghorashian,S.etal.EnhancedCARTcellexpansionandprolongedpersistenceinpediatricpatientswithALLtreatedwithalow-affinityCD19CAR.Nat.Med.25,1408–1414(2019).CAS PubMed GoogleScholar Bielamowicz,K.etal.TrivalentCARTcellsovercomeinterpatientantigenicvariabilityinglioblastoma.NeuroOncol.20,506–518(2018).CAS PubMed GoogleScholar Hung,C.F.etal.Developmentofanti-humanmesothelin-targetedchimericantigenreceptormessengerRNA-transfectedperipheralbloodlymphocytesforovariancancertherapy.Hum.GeneTher.29,614–625(2018).CAS PubMed PubMedCentral GoogleScholar Jones,B.S.,Lamb,L.S.,Goldman,F.&DiStasi,A.Improvingthesafetyofcelltherapyproductsbysuicidegenetransfer.Front.Pharmacol.5,254–254(2014).PubMed PubMedCentral GoogleScholar Hernandez,I.,Prasad,V.&Gellad,W.F.TotalcostsofchimericantigenreceptorT-cellimmunotherapy.JAMAOncol.4,994–996(2018).PubMed PubMedCentral GoogleScholar Moon,E.K.,Langer,C.J.&Albelda,S.M.Theeraofcheckpointblockadeinlungcancer:takingthebrakesofftheimmunesystem.Ann.Am.Thorac.Soc.14,1248–1260(2017).PubMed GoogleScholar Vormittag,P.,Gunn,R.,Ghorashian,S.&Veraitch,F.S.AguidetomanufacturingCARTcelltherapies.Curr.Opin.Biotechnol.53,164–181(2018).CAS PubMed GoogleScholar Guo,C.etal.Therapeuticcancervaccines:past,present,andfuture.Adv.CancerRes.119,421–475(2013).CAS PubMed PubMedCentral GoogleScholar Morales,A.,Eidinger,D.&Bruce,A.W.IntracavitaryBacillusCalmette–Guerininthetreatmentofsuperficialbladdertumors.J.Urol.116,180–183(1976).CAS PubMed GoogleScholar vanderBruggen,P.etal.AgeneencodinganantigenrecognizedbycytolyticTlymphocytesonahumanmelanoma.Science254,1643–1647(1991).ThisearlystudyidentifiesamelanomaneoantigenthatcouldelicitaspecificcytolyticTcellresponse.PubMed GoogleScholar Hanna,M.G.Jr.&Peters,L.C.ImmunotherapyofestablishedmicrometastaseswithBacillusCalmette–Guerintumorcellvaccine.CancerRes.38,204–209(1978).PubMed GoogleScholar Heicappell,R.,Schirrmacher,V.,vonHoegen,P.,Ahlert,T.&Appelhans,B.Preventionofmetastaticspreadbypostoperativeimmunotherapywithvirallymodifiedautologoustumorcells.I.Parametersforoptimaltherapeuticeffects.Int.J.Cancer37,569–577(1986).CAS PubMed GoogleScholar Plaksin,D.etal.Effectiveanti-metastaticmelanomavaccinationwithtumorcellstransfectedwithMHCgenesand/orinfectedwithNewcastlediseasevirus(NDV).Int.J.Cancer59,796–801(1994).CAS PubMed GoogleScholar Burke,S.etal.OncolyticNewcastlediseasevirusactivationoftheinnateimmuneresponseandprimingofantitumoradaptiveresponsesinvitro.CancerImmunol.Immunother.https://doi.org/10.1007/s00262-020-02495-x(2020).Curran,M.A.&Allison,J.P.Tumorvaccinesexpressingflt3ligandsynergizewithctla-4blockadetorejectpreimplantedtumors.CancerRes.69,7747–7755(2009).CAS PubMed PubMedCentral GoogleScholar Rizvi,N.A.etal.Cancerimmunology.MutationallandscapedeterminessensitivitytoPD-1blockadeinnon-smallcelllungcancer.Science348,124–128(2015).CAS PubMed PubMedCentral GoogleScholar Tran,E.etal.Immunogenicityofsomaticmutationsinhumangastrointestinalcancers.Science350,1387–1390(2015).CAS PubMed PubMedCentral GoogleScholar Castle,J.C.etal.Exploitingthemutanomefortumorvaccination.CancerRes.72,1081–1091(2012).Byusingnext-generationDNAsequencing,thisstudyidentifiessomaticmutationsthatcreatenovelimmunogenicepitopesthatcanbesuccessfullytargetedbytherapeuticvaccination.CAS PubMed GoogleScholar Kreiter,S.etal.MutantMHCclassIIepitopesdrivetherapeuticimmuneresponsestocancer.Nature520,692–696(2015).CAS PubMed PubMedCentral GoogleScholar Duan,F.etal.Genomicandbioinformaticprofilingofmutationalneoepitopesrevealsnewrulestopredictanticancerimmunogenicity.J.Exp.Med.211,2231–2248(2014).PubMed PubMedCentral GoogleScholar Gubin,M.M.etal.Checkpointblockadecancerimmunotherapytargetstumour-specificmutantantigens.Nature515,577–581(2014).CAS PubMed PubMedCentral GoogleScholar Matsushita,H.etal.CancerexomeanalysisrevealsaT-cell-dependentmechanismofcancerimmunoediting.Nature482,400–404(2012).CAS PubMed PubMedCentral GoogleScholar Yadav,M.etal.Predictingimmunogenictumourmutationsbycombiningmassspectrometryandexomesequencing.Nature515,572–576(2014).CAS PubMed GoogleScholar Alspach,E.etal.MHC-IIneoantigensshapetumourimmunityandresponsetoimmunotherapy.Nature574,696–701(2019).CAS PubMed PubMedCentral GoogleScholar Sahin,U.&Tureci,O.Personalizedvaccinesforcancerimmunotherapy.Science359,1355–1360(2018).CAS PubMed GoogleScholar Zhang,X.,Sharma,P.K.,PeterGoedegebuure,S.&Gillanders,W.E.Personalizedcancervaccines:targetingthecancermutanome.Vaccine35,1094–1100(2017).CAS PubMed GoogleScholar Ott,P.A.etal.Animmunogenicpersonalneoantigenvaccineforpatientswithmelanoma.Nature547,217–221(2017).CAS PubMed PubMedCentral GoogleScholar Sahin,U.etal.PersonalizedRNAmutanomevaccinesmobilizepoly-specifictherapeuticimmunityagainstcancer.Nature547,222–226(2017).CAS PubMed GoogleScholar Nielsen,M.,Lund,O.,Buus,S.&Lundegaard,C.MHCclassIIepitopepredictivealgorithms.Immunology130,319–328(2010).CAS PubMed PubMedCentral GoogleScholar Motzer,R.J.etal.Nivolumabplusipilimumabversussunitinibinadvancedrenal-cellcarcinoma.N.Engl.J.Med.378,1277–1290(2018).CAS PubMed PubMedCentral GoogleScholar Wolchok,J.D.etal.Overallsurvivalwithcombinednivolumabandipilimumabinadvancedmelanoma.N.Engl.J.Med.377,1345–1356(2017).Thislong-termanalysisofapreviousphaseIIIclinicaltrialdemonstratesthatnivolumabandipilimumabcombinationtherapyconferredincreasedsurvivalcomparedwithipilimumabalone.CAS PubMed PubMedCentral GoogleScholar Zhao,Y.etal.PD-L1:CD80cis-heterodimertriggerstheco-stimulatoryreceptorCD28whilerepressingtheinhibitoryPD-1andCTLA-4pathways.Immunity51,1059–1073.e9(2019).ThisstudyelegantlyimplicatesliganddimerizationinthecrosstalkbetweentheCD28,CTLA4andPD1pathways.CAS PubMed PubMedCentral GoogleScholar Butte,M.J.,Keir,M.E.,Phamduy,T.B.,Sharpe,A.H.&Freeman,G.J.Programmeddeath-1ligand1interactsspecificallywiththeB7-1costimulatorymoleculetoinhibitTcellresponses.Immunity27,111–122(2007).CAS PubMed PubMedCentral GoogleScholar Ngwa,W.etal.Usingimmunotherapytoboosttheabscopaleffect.Nat.Rev.Cancer18,313–322(2018).CAS PubMed PubMedCentral GoogleScholar Twyman-SaintVictor,C.etal.Radiationanddualcheckpointblockadeactivatenon-redundantimmunemechanismsincancer.Nature520,373–377(2015).CAS PubMed GoogleScholar Postow,M.A.etal.Immunologiccorrelatesoftheabscopaleffectinapatientwithmelanoma.N.Engl.J.Med.366,925–931(2012).CAS PubMed PubMedCentral GoogleScholar Burugu,S.,Dancsok,A.R.&Nielsen,T.O.Emergingtargetsincancerimmunotherapy.Semin.CancerBiol.52,39–52(2018).CAS PubMed GoogleScholar Donini,C.,D’Ambrosio,L.,Grignani,G.,Aglietta,M.&Sangiolo,D.Nextgenerationimmune-checkpointsforcancertherapy.J.Thorac.Dis.10,S1581–S1601(2018).PubMed PubMedCentral GoogleScholar Marin-Acevedo,J.A.etal.Nextgenerationofimmunecheckpointtherapyincancer:newdevelopmentsandchallenges.J.Hematol.Oncol.11,39(2018).PubMed PubMedCentral GoogleScholar He,Y.etal.Lymphocyte-activationgene-3,animportantimmunecheckpointincancer.CancerSci.107,1193–1197(2016).CAS PubMed PubMedCentral GoogleScholar Deng,W.W.etal.LAG-3conferspoorprognosisanditsblockadereshapesantitumorresponseinheadandnecksquamouscellcarcinoma.Oncoimmunology5,e1239005(2016).PubMed PubMedCentral GoogleScholar Sharma,P.&Allison,J.P.Thefutureofimmunecheckpointtherapy.Science348,56–61(2015).CAS PubMed GoogleScholar Brignone,C.etal.First-linechemoimmunotherapyinmetastaticbreastcarcinoma:combinationofpaclitaxelandIMP321(LAG-3Ig)enhancesimmuneresponsesandantitumoractivity.J.TranslMed.8,71(2010).PubMed PubMedCentral GoogleScholar Wang,J.etal.Fibrinogen-likeprotein1isamajorimmuneinhibitoryligandofLAG-3.Cell176,334–347.e12(2019).CAS PubMed GoogleScholar Zhu,C.etal.TheTim-3ligandgalectin-9negativelyregulatesThelpertype1immunity.Nat.Immunol.6,1245–1252(2005).CAS PubMed GoogleScholar Anderson,A.C.,Joller,N.&Kuchroo,V.K.Lag-3,Tim-3,andTIGIT:co-inhibitoryreceptorswithspecializedfunctionsinimmuneregulation.Immunity44,989–1004(2016).CAS PubMed PubMedCentral GoogleScholar Liu,J.etal.Immune-checkpointproteinsVISTAandPD-1nonredundantlyregulatemurineT-cellresponses.Proc.NatlAcad.Sci.USA112,6682–6687(2015).CAS PubMed PubMedCentral GoogleScholar Gao,J.etal.VISTAisaninhibitoryimmunecheckpointthatisincreasedafteripilimumabtherapyinpatientswithprostatecancer.Nat.Med.23,551–555(2017).CAS PubMed PubMedCentral GoogleScholar Powderly,J.etal.InterimresultsofanongoingphaseI,doseescalationstudyofMGA271(Fc-optimizedhumanizedanti-B7-H3monoclonalantibody)inpatientswithrefractoryB7-H3-expressingneoplasmsorneoplasmswhosevasculatureexpressesB7-H3.J.Immunother.Cancer3,O8(2015).PubMedCentral GoogleScholar Kramer,K.etal.Compartmentalintrathecalradioimmunotherapy:resultsfortreatmentformetastaticCNSneuroblastoma.J.Neurooncol.97,409–418(2010).PubMed GoogleScholar Tolcher,A.W.etal.Phase1,first-in-human,openlabel,doseescalationctudyofMGD009,ahumanizedB7-H3×CD3dual-affinityre-targeting(DART)proteininpatientswithB7-H3-expressingneoplasmsorB7-H3expressingtumorvasculature.J.Clin.Oncol.34,TPS3105(2016). GoogleScholar Chauvin,J.M.etal.TIGITandPD-1impairtumorantigen-specificCD8+Tcellsinmelanomapatients.J.Clin.Invest.125,2046–2058(2015).PubMed PubMedCentral GoogleScholar Kowolik,C.M.etal.CD28costimulationprovidedthroughaCD19-specificchimericantigenreceptorenhancesinvivopersistenceandantitumorefficacyofadoptivelytransferredTcells.CancerRes.66,10995–11004(2006).CAS PubMed GoogleScholar Coyle,A.J.etal.TheCD28-relatedmoleculeICOSisrequiredforeffectiveTcell-dependentimmuneresponses.Immunity13,95–105(2000).CAS PubMed GoogleScholar Fan,X.,Quezada,S.A.,Sepulveda,M.A.,Sharma,P.&Allison,J.P.EngagementoftheICOSpathwaymarkedlyenhancesefficacyofCTLA-4blockadeincancerimmunotherapy.J.Exp.Med.211,715(2014).CAS PubMed PubMedCentral GoogleScholar Vonderheide,R.H.etal.Tremelimumabincombinationwithexemestaneinpatientswithadvancedbreastcancerandtreatment-associatedmodulationofinduciblecostimulatorexpressiononpatientTcells.Clin.CancerRes.16,3485–3494(2010).CAS PubMed GoogleScholar Kjaergaard,J.etal.TherapeuticefficacyofOX-40receptorantibodydependsontumorimmunogenicityandanatomicsiteoftumorgrowth.CancerRes.60,5514–5521(2000).CAS PubMed GoogleScholar Weinberg,A.D.etal.EngagementoftheOX-40receptorinvivoenhancesantitumorimmunity.J.Immunol.164,2160–2169(2000).CAS PubMed GoogleScholar Valzasina,B.etal.TriggeringofOX40(CD134)onCD4+CD25+Tcellsblockstheirinhibitoryactivity:anovelregulatoryroleforOX40anditscomparisonwithGITR.Blood105,2845–2851(2005).CAS PubMed GoogleScholar Parrott,D.M.V.,deSousa,M.A.B.&East,J.Thymus-dependentareasinthelymphoidorgansofneonatallythymectomizedmice.J.Exp.Med.123,191–204(1966).CAS PubMed PubMedCentral GoogleScholar Miller,J.F.&Mitchell,G.F.Celltocellinteractionintheimmuneresponse.I.Hemolysin-formingcellsinneonatallythymectomizedmicereconstitutedwiththymusorthoracicductlymphocytes.J.Exp.Med.128,801–820(1968).CAS PubMed PubMedCentral GoogleScholar LeBien,T.W.&Tedder,T.F.Blymphocytes:howtheydevelopandfunction.Blood112,1570–1580(2008).CAS PubMed PubMedCentral GoogleScholar vandenBroek,T.,Borghans,J.A.M.&vanWijk,F.ThefullspectrumofhumannaiveTcells.Nat.Rev.Immunol.18,363–373(2018).PubMed GoogleScholar Vignali,D.A.,Collison,L.W.&Workman,C.J.HowregulatoryTcellswork.Nat.Rev.Immunol.8,523–532(2008).CAS PubMed PubMedCentral GoogleScholar Kumar,B.V.,Connors,T.J.&Farber,D.L.HumanTcelldevelopment,localization,andfunctionthroughoutlife.Immunity48,202–213(2018).CAS PubMed PubMedCentral GoogleScholar Nikolich-Zugich,J.,Slifka,M.K.&Messaoudi,I.ThemanyimportantfacetsofT-cellrepertoirediversity.Nat.Rev.Immunol.4,123–132(2004).CAS PubMed GoogleScholar Wilson,I.A.&Garcia,K.C.T-cellreceptorstructureandTCRcomplexes.Curr.Opin.Struct.Biol.7,839–848(1997).CAS PubMed GoogleScholar Mueller,D.L.,Jenkins,M.K.&Schwartz,R.H.Clonalexpansionversusfunctionalclonalinactivation:acostimulatorysignallingpathwaydeterminestheoutcomeofTcellantigenreceptoroccupancy.Annu.Rev.Immunol.7,445–480(1989).CAS PubMed GoogleScholar Martin,P.J.etal.A44kilodaltoncellsurfacehomodimerregulatesinterleukin2productionbyactivatedhumanTlymphocytes.J.Immunol.136,3282–3287(1986).CAS PubMed GoogleScholar Gmunder,H.&Lesslauer,W.A45-kDahumanT-cellmembraneglycoproteinfunctionsintheregulationofcellproliferativeresponses.Eur.J.Biochem.142,153–160(1984).CAS PubMed GoogleScholar June,C.H.,Ledbetter,J.A.,Linsley,P.S.&Thompson,C.B.RoleoftheCD28receptorinT-cellactivation.Immunol.Today11,211–216(1990).CAS PubMed GoogleScholar Lesslauer,W.etal.T90/44(9.3antigen).AcellsurfacemoleculewithafunctioninhumanTcellactivation.Eur.J.Immunol.16,1289–1296(1986).CAS PubMed GoogleScholar Hansen,J.A.,Martin,P.J.&Nowinski,R.C.MonoclonalantibodiesidentifyinganovelT-cellantigenandIaantigensofhumanlymphocytes.Immunogenetics10,247–260(1980).ThisstudyisthefirsttoidentifyanewTcellantigen,laternamedCD28,thatfunctionsinTcellco-stimulation. GoogleScholar Hara,T.,Fu,S.M.&Hansen,J.A.HumanTcellactivation.II.AnewactivationpathwayusedbyamajorTcellpopulationviaadisulfide-bondeddimerofa44kilodaltonpolypeptide(9.3antigen).J.Exp.Med.161,1513–1524(1985)ThisstudyprovidesevidencethattherecentlydiscoveredCD28receptorfunctionedtoaugmentTcellactivation.CAS PubMed GoogleScholar Jin,B.,Sun,T.,Yu,X.H.,Yang,Y.X.&Yeo,A.E.TheeffectsofTLRactivationonT-celldevelopmentanddifferentiation.Clin.Dev.Immunol.2012,836485(2012).PubMed PubMedCentral GoogleScholar Sharpe,A.H.&Freeman,G.J.TheB7-CD28superfamily.Nat.Rev.Immunol.2,116–126(2002).CAS PubMed GoogleScholar Buchbinder,E.I.&Desai,A.CTLA-4andPD-1pathways:similarities,differences,andimplicationsoftheirinhibition.Am.J.Clin.Oncol.39,98–106(2016).CAS PubMed PubMedCentral GoogleScholar Cantrell,D.A.T-cellantigenreceptorsignaltransduction.Immunology105,369–374(2002).CAS PubMed PubMedCentral GoogleScholar Palacios,E.H.&Weiss,A.FunctionoftheSrc-familykinases,LckandFyn,inT-celldevelopmentandactivation.Oncogene23,7990–8000(2004).CAS PubMed GoogleScholar Alexander,D.R.TheCD45tyrosinephosphatase:apositiveandnegativeregulatorofimmunecellfunction.Semin.Immunol.12,349–359(2000).CAS PubMed GoogleScholar Rossy,J.,Williamson,D.J.&Gaus,K.HowdoesthekinaseLckphosphorylatetheTcellreceptor?Spatialorganizationasaregulatorymechanism.Front.Immunol.3,167(2012).CAS PubMed PubMedCentral GoogleScholar Macian,F.etal.Transcriptionalmechanismsunderlyinglymphocytetolerance.Cell109,719–731(2002).CAS PubMed GoogleScholar Miller,J.F.&Morahan,G.PeripheralTcelltolerance.Annu.Rev.Immunol.10,51–69(1992).CAS PubMed GoogleScholar Lenardo,M.etal.MatureTlymphocyteapoptosis-immuneregulationinadynamicandunpredictableantigenicenvironment.Annu.Rev.Immunol.17,221–253(1999).CAS PubMed GoogleScholar Zheng,L.,Li,J.&Lenardo,M.Restimulation-inducedcelldeath:newmedicalandresearchperspectives.Immunol.Rev.277,44–60(2017).CAS PubMed GoogleScholar Mueller,S.N.,Gebhardt,T.,Carbone,F.R.&Heath,W.R.MemoryTcellsubsets,migrationpatterns,andtissueresidence.Annu.Rev.Immunol.31,137–161(2013).CAS PubMed GoogleScholar Sade-Feldman,M.etal.DefiningTcellstatesassociatedwithresponsetocheckpointimmunotherapyinmelanoma.Cell175,998–1013.e20(2018).CAS PubMed PubMedCentral GoogleScholar Azizi,E.etal.Single-cellmapofdiverseimmunephenotypesinthebreasttumormicroenvironment.Cell174,1293–1308.e36(2018).CAS PubMed PubMedCentral GoogleScholar Pauken,K.E.etal.EpigeneticstabilityofexhaustedTcellslimitsdurabilityofreinvigorationbyPD-1blockade.Science354,1160–1165(2016).CAS PubMed PubMedCentral GoogleScholar Gide,T.N.etal.Distinctimmunecellpopulationsdefineresponsetoanti-PD-1monotherapyandanti-PD-1/anti-CTLA-4combinedtherapy.CancerCell35,238–255.e6(2019).CAS PubMed GoogleScholar DownloadreferencesAcknowledgementsThisworkwassupportedbytheDivisionofIntramuralResearch,NationalInstituteofAllergyandInfectiousDiseases,NIH.A.D.W.wassupportedbytheEmoryUniversityMD/PhDProgram,NIHMD/PhDPartnershipsProgramandNIHOxford–CambridgeScholarsProgram.J.M.F.wassupportedbythePostdoctoralResearchAssociateTrainingProgramoftheNationalInstituteofGeneralMedicalSciences.TheauthorsthankR.Kissingerforhelpwiththeillustrations.TheythankG.DeLucaforhissupportofA.D.W.asaDPhilco-mentor.TheyalsothankY.Zhangforinvaluableeditorialandscientificfeedback.Lastly,theauthorsacknowledgeandapologizetoallresearchersinthisfieldwhomayhaveauthoredelegantstudiesthatwerenotcitedowingtospacelimitations.AuthorinformationAuthorsandAffiliationsMolecularDevelopmentoftheImmuneSystemSection,LaboratoryofImmuneSystemBiology,NationalInstituteofAllergyandInfectiousDiseases,NationalInstitutesofHealth,Bethesda,MD,USAAlexD.Waldman, JillM.Fritz & MichaelJ.LenardoClinicalGenomicsProgram,DivisionofIntramuralResearch,NationalInstituteofAllergyandInfectiousDiseases,NationalInstitutesofHealth,Bethesda,MD,USAAlexD.Waldman, JillM.Fritz & MichaelJ.LenardoAuthorsAlexD.WaldmanViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarJillM.FritzViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarMichaelJ.LenardoViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarContributionsTheauthorscontributedequallytoallaspectsofthearticle.CorrespondingauthorCorrespondenceto MichaelJ.Lenardo.Ethicsdeclarations Competinginterests Theauthorsdeclarenocompetinginterests. AdditionalinformationPeerreviewinformationNatureReviewsImmunologythanksJ.Oliaroandtheother,anonymous,reviewer(s)fortheircontributiontothepeerreviewofthiswork.Publisher’snoteSpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.GlossaryNeoantigens Antigensnotexpressedbyself-tissuesundernormalconditionsthatmanifestinthecontextofpathology;incancer,thesecouldbealteredproteins/peptidesencodedbymutatedgenes. Immunecheckpoint Amechanismofimmunecellinhibitionthatrestrainsactivation. Immunoglobulinsuperfamily Agroupofproteinswithgeneticandstructuralsimilaritiestoantibodies. Antigen-presentingcells (APCs).Immunecellsinvolvedintheuptakeandprocessingofantigenstoinitiatecellularimmuneresponses. CTLA4Ig SolublerecombinanthumancytotoxicTlymphocyteantigen4(CTLA4)fusedtotheimmunoglobulinFcdomainthatcompeteswithendogenousCD28foritsligands. Immunologicalsynapse Aninterfacebetweeninteractinglymphocytesandantigen-presentingcellsthatcontrolsantigen-inducedsignalling. Immuneconjugate Abiologicalunitthatcomprisesinteractinglymphocytesandantigen-presentingcells. IL-2 Acytokineessentialforlymphocyteactivation,proliferationandtolerance. Adaptorprotein Anintracytoplasmicproteinthatfacilitatesmolecularinteractionsandsignaltransduction. Antibody-dependentcell-mediatedcytotoxicity Theprocessbywhichantibody-basedopsonizationoftargetcellspromotestheirlysisbyimmunecytotoxiccells. BALB/c Analbinoinbredmousestraincommonlyusedinimmunologyresearch. Non-obesediabetic Aninbredmousestainwithenhancedsusceptibilitytospontaneousdevelopmentoftype1diabetesmellitus. Immunoreceptortyrosine-basedswitchmotif Aconservedaminoacidsequence(TxYxx(V/I))involvedinbothactivationandinhibitionofdownstreamsignallingdependingonthecelltypeandbiologicalcontext. Immunoreceptortyrosine-basedinhibitorymotif Aconservedaminoacidsequence(S/I/V/LxYxxI/V/L)involvedintherecruitmentofinhibitoryphosphatasestodampendownstreamsignalling. Tcellexhaustion Theprogressivelossofeffectorfunctionduetochroniclow-affinityantigenstimulation. Abscopalresponses Aphenomenoninwhichthetherapeuticeffectofradiationisextendedbeyondtheboundariesofthetissuethatwastreated Thelper2(TH2)cellskewing BiasingofCD4+Thelpercellstowardsaphenotypeessentialforhumoralimmunity. RightsandpermissionsReprintsandPermissionsAboutthisarticleCitethisarticleWaldman,A.D.,Fritz,J.M.&Lenardo,M.J.Aguidetocancerimmunotherapy:fromTcellbasicsciencetoclinicalpractice. NatRevImmunol20,651–668(2020).https://doi.org/10.1038/s41577-020-0306-5DownloadcitationAccepted:03April2020Published:20May2020IssueDate:November2020DOI:https://doi.org/10.1038/s41577-020-0306-5SharethisarticleAnyoneyousharethefollowinglinkwithwillbeabletoreadthiscontent:GetshareablelinkSorry,ashareablelinkisnotcurrentlyavailableforthisarticle.Copytoclipboard ProvidedbytheSpringerNatureSharedItcontent-sharinginitiative Furtherreading Therapeuticapplicationsofengineeredchimericantigenreceptors-Tcellforcancertherapy AminaHussain Beni-SuefUniversityJournalofBasicandAppliedSciences(2022) Naringeninandcryptotanshinoneshift theimmuneresponsetowardsTh1andmodulateTregulatorycellsviaJAK2/STAT3pathwayinbreastcancer ShokoofeNoori MitraNourbakhsh ZohrehAbdolvahabi BMCComplementaryMedicineandTherapies(2022) RecenthighlightsintheimmunomodulatoryaspectsofTregcell-derivedextracellularvesicles:specialemphasisonautoimmunediseasesandtransplantation YahyaAsemani SajadNajafi RezaJafari Cell&Bioscience(2022) TargetingRNAN6-methyladenosinemodification:apreciseweaponinovercomingtumorimmuneescape WeiLi YiHao DaPang MolecularCancer(2022) Theambiguousroleofobesityinoncologybypromotingcancerbutboostingantitumorimmunotherapy JoséAntônioFagundesAssumpção GabrielPasquarelli-do-Nascimento KellyGraceMagalhães JournalofBiomedicalScience(2022) DownloadPDF AssociatedContent Collection Tcells Advertisement Explorecontent Researcharticles Reviews&Analysis News&Comment Videos Currentissue Collections FollowusonFacebook FollowusonTwitter Signupforalerts RSSfeed Aboutthejournal Aims&Scope JournalInformation AbouttheEditors JournalCredits Editorialinputandchecks EditorialValuesStatement JournalMetrics Publishingmodel Editorialpolicies Posters Calendars Conferences WebFeeds Contact Publishwithus ForAuthors ForReferees Submitmanuscript Search Searcharticlesbysubject,keywordorauthor Showresultsfrom Alljournals Thisjournal Search Advancedsearch Quicklinks Explorearticlesbysubject Findajob Guidetoauthors Editorialpolicies Closebanner Close SignupfortheNatureBriefingnewsletter—whatmattersinscience,freetoyourinboxdaily. Emailaddress Signup IagreemyinformationwillbeprocessedinaccordancewiththeNatureandSpringerNatureLimitedPrivacyPolicy. Closebanner Close Getthemostimportantsciencestoriesoftheday,freeinyourinbox. SignupforNatureBriefing
延伸文章資訊
- 1What is immunotherapy - Cancer Research UK
Immunotherapy uses our immune system to fight cancer. It works by helping the immune system recog...
- 2Immunotherapy for Cancer - NCI
Immunotherapy is a type of cancer treatment that helps your immune system fight cancer. The immun...
- 3What is Immunotherapy - Cancer Research Institute (CRI)
Immunotherapies are a form of biotherapy (also called biologic therapy or biological response mod...
- 4What Is Immunotherapy? - Cancer.Net
Immunotherapy is a type of cancer treatment. It uses substances made by the body or in a laborato...
- 5Immunotherapy To Treat Cancer: Options & Side Effects | CTCA
Immunotherapy is a broad category of cancer therapies that triggers the body's immune system to f...