A guide to cancer immunotherapy: from T cell basic science to ...

文章推薦指數: 80 %
投票人數:10人

Cancer immunotherapy has now revolutionized the field of oncology by prolonging survival of patients with rapidly fatal cancers. The number of ... Skiptomaincontent Thankyouforvisitingnature.com.YouareusingabrowserversionwithlimitedsupportforCSS.Toobtain thebestexperience,werecommendyouuseamoreuptodatebrowser(orturnoffcompatibilitymodein InternetExplorer).Inthemeantime,toensurecontinuedsupport,wearedisplayingthesitewithoutstyles andJavaScript. Advertisement nature naturereviewsimmunology reviewarticles article Aguidetocancerimmunotherapy:fromTcellbasicsciencetoclinicalpractice DownloadPDF DownloadPDF Subjects CancerimmunotherapyDrugdiscoveryImmunology AbstractTheTlymphocyte,especiallyitscapacityforantigen-directedcytotoxicity,hasbecomeacentralfocusforengagingtheimmunesysteminthefightagainstcancer.BasicsciencediscoverieselucidatingthemolecularandcellularbiologyoftheTcellhaveledtonewstrategiesinthisfight,includingcheckpointblockade,adoptivecellulartherapyandcancervaccinology.Thisareaofimmunologicalresearchhasbeenhighlyactiveforthepast50yearsandisnowenjoyingunprecedentedbench-to-bedsideclinicalsuccess.Here,weprovideacomprehensivehistoricalandbiologicalperspectiveregardingtheadventandclinicalimplementationofcancerimmunotherapeutics,withanemphasisonthefundamentalimportanceofTlymphocyteregulation.Wehighlightclinicaltrialsthatdemonstratetherapeuticefficacyandtoxicitiesassociatedwitheachclassofdrug.Finally,wesummarizeemergingtherapiesandemphasizetheyettobeelucidatedquestionsandfuturepromisewithinthefieldofcancerimmunotherapy. IntroductionTheideatodeploytheimmunesystemasatooltotreatneoplasticdiseaseoriginatedinthenineteenthcentury1.WilhelmBuschandFriedrichFehleisenwerethefirsttodescribeanepidemiologicalassociationbetweenimmunestatusandcancer.Theynoticedspontaneousregressionoftumoursfollowingthedevelopmentoferysipelas,asuperficialskininfectionmostcommonlycausedbyStreptococcuspyogenes1.Later,WilliamColey,oftencalledthe‘FatherofCancerImmunotherapy’,retrospectivelydemonstratedthaterysipelaswasassociatedwithabetteroutcomeinpatientswithsarcoma2.Withhopesofprospectivelyverifyinghisepidemiologicalevidence,Coleytreatedpatientswithcancerwithextractsofheat-inactivatedS.pyogenesandSerratiamarcescenstoboostimmunity3.Thisextract,termed‘Coley’stoxins’,possessedpotentimmunostimulatorypropertiesandachievedfavourableresponsesinvariouscancers2.However,lackofscientificrigourandreproducibility,inconcertwiththediscoveryofradiotherapyandchemotherapeuticagents,preventedtreatmentwith‘Coley’stoxins’frombecomingstandardpractice1.Theconceptofcancerimmunotherapyresurfacedinthetwentiethcenturyandmadesignificantheadwaywiththeadventofnewtechnology.In1909,PaulEhrlichhypothesizedthatthehumanbodyconstantlygeneratesneoplasticcellsthatareeradicatedbytheimmunesystem3.LewisThomasandSirFrankMacfarlaneBurnetindependentlyconceivedthe‘cancerimmunosurveillance’hypothesis,statingthattumour-associatedneoantigensarerecognizedandtargetedbytheimmunesystemtopreventcarcinogenesisinamannersimilartograftrejection1.Productiveimmuneresponsesfollowingtumouraladoptivetransferinmice4andclinicalreportsofspontaneousregressionofmelanomainpatientswithconcomitantautoimmunedisease5providedadditionalevidencesupportingthishypothesis,althoughaunifyingmechanismwaselusive.Theadventofknockoutmousemodelsprovidedthenecessarytechnologytoexperimentallydemonstratealinkbetweenimmunodeficiencyandcancer6.Additionalmolecularandbiochemicaladvancesledtotheidentificationoftumour-specificimmuneresponses7.Thisprovidedunequivocalevidencethattheimmunesystem,inparticularTcells(seeBox 1andFig. 1),wascapableofwagingwaroncancertissue7.Cancerimmunotherapyhasnowrevolutionizedthefieldofoncologybyprolongingsurvivalofpatientswithrapidlyfatalcancers.Thenumberofpatientseligibleforimmune-basedcancertreatmentscontinuestoskyrocketasthesetherapiespositionthemselvesasthefirstlineformanycancerindications.Noveltreatmentcombinationsandnewlyidentifieddruggabletargetswillonlyexpandtheroleofimmunotherapyinthetreatmentofcancerinthedecadestocome.Fig.1:PeripheralTcellfatesafterantigenicactivation.RestingTcellsbecomeactivatedafterstimulationbycognateantigeninthecontextofanantigen-presentingcellandco-stimulatorysignals.ActivatedTcellsproduceandconsumeproliferative/survivalcytokines,forexample,IL-2,IL-4andIL-7,andbegintoexpandinnumber.IfCD4+CD25+regulatoryT(Treg)cellsarepresent,theycandeprivethecyclingTcellsofproliferative/survivalcytokines,especiallyIL-2,causingthemtoundergoapoptosis.Oncecellsareproliferatingrapidly,theyhavedifferentfatesdependingontheirenvironment.Iftheyreceiveacutestrongantigenicstimulation,especiallyifitisencounteredrepeatedly,thecellswillundergorestimulation-inducedcelldeath.Bycontrast,iftheyreceivechronicweakantigenicstimulation,thecellswillsurvivebutbecomereprogrammedintoaspecificunresponsivetranscriptionalstateknownas‘Tcellexhaustion’.Finally,astheantigenandcytokinestimulationdiminishesastheimmuneresponsewanes,usuallyoncethepathogenhasbeencleared,cytokinewithdrawalcanoccurpassivelytocontracttheexpandedpopulationofantigen-specificTcells.Asmallfractionofcellswillbereprogrammedtoentera‘memory’phenotype,andthisdifferentiationstepisfacilitatedbyIL-7andIL-15.MemoryTcellswillcontinuetopersistintheimmunesystemandformthebasisofanamnesticresponses.Intheseregulatoryprocesses,Tcelldeathusuallytakestheformofapoptosis.FullsizeimageInthisReview,weemphasizetheroleofTcellsinmoderncancerimmunotherapiesanddiscussthreedifferentcategoriesofimmunotherapeuticapproachestotreatcancer:immunecheckpointblockade,anapproachthatisdesignedto‘unleash’powerfulTcellresponses;adoptivecellulartherapies,whicharebasedontheinfusionoftumour-fightingimmunecellsintothebody;andcancervaccines,whichcanbedesignedtohaveeitherprophylacticortherapeuticactivity.Finally,weintroducesomeoftheemergingtargetsandapproachesincancerimmunotherapy.Box1Tcellfunction,development,activationandfateThe1960srepresentedaperiodofenlightenmentwithinthefieldofimmunologybecausetwomajorsubtypesoflymphocytes,BlymphocytesandTlymphocytes,werecharacterized264,265.Thiswasrecognizedbythe2019LaskerAwardforBasicScience,awardedforthepioneeringworkbyJacquesA.F.P.MillerandMaxDaleCooperthatdefinedthekeyrolesofTcellsandBcellsinadaptiveimmunity.Bcellsrecognizecirculatingantigeninitsnativeformandrespondbysecretingprotectiveantibodies266.Bycontrast,Tcellsrecognizepeptideantigens,derivedfromproteinsdegradedintracellularly,thatareloadedontocellsurfaceMHCmolecules,aprocesscalledantigenpresentation.TwobroadclassesofTcellsthathavedistincteffectormechanismsaredelineatedbytheexpressionofeithertheCD4orCD8co-receptor:CD4+TcellsdetectantigeninthecontextofMHCclassIImoleculesandorchestratetheadaptivearmoftheimmunesystembyproducingcytokineswithchemotactic,pro-inflammatoryandimmunoprotectiveproperties267.AtleastoneCD4+Tcellsubclass,CD4+CD25+regulatoryTcells,dampenstheimmuneresponsefollowingchallenge268.CD8+TcellsdetectantigeninthecontextofMHCclassImoleculesandcarryoutdirectcytotoxicreactionsthatkillinfectedorneoplasticcells269.Auniqueclone-specificcellsurfaceproteincomplex,theTcellreceptor(TCR),specificallyrecognizesantigensandparticipatesinthedevelopmentalselectionofTcellsthatcanrecognizepathogensbutareself-tolerant270.TheTCRcomplexcompriseshighlypolymorphicsingleα-andβ-glycoproteinchains(asmallTcellpopulationharboursγ-andδ-chainsinstead)thatcontainvariableandconstantregions,akintoimmunoglobulins,andagroupofnon-polymorphicsignallingchains,calledCD3γ,δ,εandζ.AvastrepertoireofTcellclonotypeswithuniquespecificitiesisgeneratedthroughrearrangementofα-andβ-chaingenesegmentswithinthegenomeofeachTcell271.Followingclonotypeproduction,positiveandnegativethymicselectionfunctionstoentraina‘tolerant’immunesystem,onethatefficientlyrespondstopathogensorcancercellsbutgenerallyignoresor‘tolerates’self-tissuesasnon-immunogenic269,270.AntigenstimulationoftheTCRisnecessaryforTcellactivationandproliferation,butanadditionalsignal,termedco-stimulation,isrequiredforphosphorylationeventscrucialforearlysignaltransduction272.Thenon-polymorphicsurfaceproteinCD28anditsfamilymembersarethemostpotentco-stimulatoryreceptorsonTcells,aselegantlydemonstratedbythesynergismofanti-CD28stimulatoryantibodiesandTCRengagementonTcellactivationandproliferation273,274.AdditionalevidencewasprovidedbystudiesdemonstratingtheefficientinhibitionofTcellactivationandproliferationbyinhibitoryanti-CD28antibodies275,276,277,278.TheligandsforCD28,B7-1andB7-2,areexpressedonantigen-presentingcellsandareupregulatedwhenthesecellsencountermicroorganismsthatactivateToll-likereceptorsorotherpathogensensors279,280.Inhibitorymolecules,includingcytotoxicTlymphocyte-associatedprotein4(CTLA4)andprogrammedcelldeath1(PD1),areinducedduringimmuneresponsesandrepresenta‘checkpoint’todampenTcellhyperactivation281(seeFig. 2).ThepolymorphicTCRsignalsthroughacomplexofthreesetsofdimericCD3chains,ε–δ,γ–δandζ–ζ282.TheintracellularportionsoftheCD3chainscontainimmunoreceptortyrosine-basedactivationmotifsthatarephosphorylatedbylymphocyte-specificproteinkinase(LCK),aSRCfamilykinase283.Atrest,thesurfacesignallingproteinCD45exhibitsphosphataseactivitythatblocksLCKfunction284.Followingactivation,CD45removesaninhibitoryphosphateonLCK,permittingphosphorylationofζchain-associatedproteinkinase70(ZAP70),aSYKkinasefamilymemberthatbindstoimmunoreceptortyrosine-basedactivationmotifsintheCD3ζ-chainandrecruitsthelinkerforactivationofTcells(LAT)andphospholipaseCγ1(PLCγ)285.Withampleco-stimulation,downstreamsignallingaffectscalciumrelease,theactivationoftheGTPaseRASandtranscriptionalreprogrammingessentialforactivatedTcellfunction286.Followingactivation,circulatingnaiveTcellshavethreemajorfatesintheperiphery(Fig. 1).First,theeffectorTcellpopulationcancontractthroughapoptosisastheimmuneresponseresolves(cytokinewithdrawal)orfollowingrepeatedhigh-dosestimulation(restimulation-inducedcelldeath)287,288,289.Tcellscanalsoexhibitanexhaustedphenotypeinducedbyrepeatedlow-doseandlow-affinitystimulation,asseeninchronicinfectionsandneoplasticprocesses88.Lastly,asubsetoftheseeffectorcellsareinvolvedinlong-termimmunologicalmemory.MemoryTcellsareprimedtoreactmorevigorouslytothesameantigenduringasubsequentencounter,makingthemcriticalmediatorsofimmunerecallresponsestopathogensandtumours290.Leveragingthepoweroftechnologicaladvancesinmolecularbiology,recentsingle-cellRNAsequencingandepigenomicstudieshaveprovidedadditionalmolecularinsightintoTcellfatesandthecorrespondingfeaturesofimmunotherapy-responsiveTcells.Thesestudiescollectivelyimplicatethatcomplextranscriptomic,epigenomicandclonotypicchangesoftumour-infiltratingTcellsdeterminethesuccessofimmunotherapy291,292,293,294.ImmunecheckpointtherapySeveralevolutionarilyconservednegativeregulatorsofTcellactivationactas‘checkpointmolecules’tofine-tunetheimmuneresponseandregulatehyperactivation.CytotoxicTlymphocyteantigen4(CTLA4)andprogrammedcelldeath1(PD1)arethemostpotentexamplesofTcellimmunecheckpointmolecules.TheyexerttheirbiologicaleffectatdistinctbodysitesandtimesduringtheTcelllifespan8.Therefore,theycomplementeachotherfunctionallyandensurethatTcellresponsespreserveself-tolerancewhileeffectivelyprotectingthebodyfrompathogensandneoplasia.CTLA4andPD1havebeensuccessfullytargetedbyseveralpioneeringresearchgroupsastreatmentsforawidevarietyofrecalcitrantcancers,researchthatultimatelyearnedJamesP.AllisonandTasukuHonjothe2018NobelPrizeinPhysiologyorMedicine.CTLA4biologicalfunctionAfterthediscoveryofTcellco-stimulationmediatedbythesurfaceproteinCD28(Box 1),thesearchforadditionalimmuneregulatorsledtotheidentificationofCTLA4,areceptorwithstructuralandbiochemicalsimilaritiestoCD28,asanewimmunoglobulinsuperfamilymember9,10.TheCTLA4andCD28genesarefoundinthesameregionofchromosome2(2q33.2)andareselectivelyexpressedinthehaematopoieticcompartment11.However,incontrasttothehighlevelsofbasalCD28expressiononconventionalTcells,CTLA4isexpressedatalowbasallevelandisstronglyinducedfollowingantigenactivation.Interestingly,CD4+CD25+regulatoryT(Treg)cells,whichhaveanimmunosuppressivefunction,expressCTLA4constitutively.Structurally,bothCTLA4andCD28formmembrane-boundhomodimerscomprisinganextracellularimmunoglobulin-likedomain,atransmembraneregionandacytoplasmictailcapableofrecruitingsignallingproteinsandcontrollingsurfaceexpression10,12,13.ThetraffickingofCTLA4-containingvesiclestothecellsurfaceafteractivationiscontrolledbyaphysicalinteractionwiththelipopolysaccharide-responsiveandbeige-likeanchorprotein(LRBA)13.ThesequencesimilaritybetweenCTLA4andCD28ishighestwithintheirextracellularbindingdomainandtheythereforebindtothesameligands,calledB7-1(alsoknownasCD80)andB7-2(alsoknownasCD86),whichareexpressedbyantigen-presentingcells(APCs;Box 1).However,CTLA4hasgreateraffinityandaviditythanCD28forB7ligands,representingakeydifferenceintheirbiology14,15,16.Withfurthercharacterization,itbecameclearthatCD28andCTLA4hadoppositeimmunoregulatoryfunctions.Forexample,solubleCTLA4wasshowntoinhibittheproliferationofTcellsco-culturedwithB7-expressingAPCsbecauseitinterferedwiththeCD28–B7interaction14.Tcellreceptor(TCR)signallingstudiesunequivocallydemonstratedthatCTLA4inhibitsTcellactivationandproliferation12,17,18.ThenegativetolerogenicroleofCTLA4wasalsoevidentinvivo,becauseCtla4-knockoutmicedevelopedacharacteristicTcell-mediatedlymphoproliferativeautoimmunedisease19.TheabsenceofCtla4wassufficienttocausethisphenotype,astreatmentwithanengineeredsolubleversionofaCTLA4:Fcfusionprotein(CTLA4Ig)andgeneticcrossestoB7-deficientmiceameliorateddisease20,21.TheautoimmunelymphoproliferativedisordercausedbyCtla4lossdependsontheactivityofCD28becausemutationofanLCK-bindingcarboxy-terminalprolinemotifintheintracellulartailofCD28abrogatesdiseaseinmousemodels22.Moreover,humanpatientswithCTLA4haploinsufficiencyexhibitsimilarseveremultiorganlymphocyticinfiltrationandautoimmunity(CHAIdisease)thatcanbetreatedwithabatacept,anFDA-approvedCTLA4Ig23,24.CTLA4restrainsTcellactivationthroughmultiplemechanisms:bydirectlyantagonizingCD28,bycompetingforco-stimulatoryligands,bypreventingimmuneconjugateformationandbyrecruitinginhibitoryeffectors25(Fig. 2).TodirectlyopposeCD28activity,intracellularvesiclesreleaseCTLA4attheimmunologicalsynapsewhereitassociateswiththeTCR26.Inthecontextoftheimmunologicalsynapse,CTLA4canalsoreorganizethecytoskeletonanddisturbTcell–APCimmuneconjugateformation27.CTLA4alsomediatestheinternalizationofitsligands,therebypreventingtheirbindingtoCD28,which,inturn,reducesIL-2secretionandTcellproliferation17,28,29.Lastly,phosphatases,includingSH2domain-containingtyrosinephosphatase2(SHP2)andproteinphosphatase2A(PP2A),arerecruitedandinteractwiththecytoplasmictailofCTLA4,therebycontributingtoitsnegativeeffectonTcellactivation.SHP2isaninhibitorofphosphorylationoftheCD3ζ-subunitoftheTCRandalsoinhibitsphosphorylationoftheadaptorproteinlinkerofactivatedTcells(LAT)30,31.PP2Aishypothesizedtoinhibitextracellularsignal-regulatedkinase(ERK),akinasethatactsasasignallingproteindownstreamoftheTCR32.However,thereissignificantdebateaboutwhichofthemoleculesthatassociatewiththecytoplasmictailofCTLA4aremostimportantforinhibitingTcellactivity.Nevertheless,theseinhibitorysignalsreducetheactivationoftranscriptionfactors,suchasactivatorprotein1(AP-1),nuclearfactor-κB(NF-κB)andnuclearfactorofactivatedTcells(NFAT),whichreprogrammesTcellstowardsananergicfate29,33.Fig.2:MechanismsofTcellactivationandregulation.Beforeactivation,antigen-presentingcells(APCs)loadantigenontoMHCmoleculestoprepareforcontactwithaTcellthatdisplaysacognateTcellreceptor(TCR)whilealsoprovidingnecessaryco-stimulatoryligandsB7-1andB7-2.TheinhibitorymoleculecytotoxicTlymphocyteantigen4(CTLA4)iscontainedwithinintracellularvesiclesinnaiveTcells,whereasitisconstitutivelyexpressedonthecellsurfaceofCD4+CD25+regulatoryT(Treg)cells.BothclassesofTcellsexpresstheco-stimulatoryreceptorCD28.Earlyafteractivation,generallyinthelymphoidtissue,TcellsareactivatedwhentheirTCRsbindtotheircognateantigenpresentedbyAPCsinconjunctionwithCD28bindingtoB7-1/B7-2.Also,theactivatedTcellsbegintheprocessofdisplayingCTLA4onthecellsurface.TcellswithinperipheraltissuesupregulatePD1atthemRNAlevelearlyafteractivation.Lateafteractivation,inlymphoidtissue,CTLA4expressedbyactivatedTcellsbindstotheB7-1andB7-2moleculesonAPCs,therebypreventingtheirbindingtoCD28andpromotinganergybydecreasingtheTcellactivationstate.Atthesametime,constitutiveexpressionofCTLA4onTregcellsleadstotrans-endocytosisofB7ligandsandinterfereswiththeCD28co-stimulatoryabilityofAPCs.Lateafteractivationinperipheraltissues,PD1isfurtherupregulatedtranscriptionally,leadingtogreatersurfaceexpressionofprogrammedcelldeath1(PD1),whichbindstoitsligandsPDL1andPDL2,therebypromotingTcellexhaustionatsitesofinfectionorwhenconfrontedwithneoplasms.ImagecourtesyoftheNationalInstituteofAllergyandInfectiousDiseases.FullsizeimageBeyonditsfunctioninactivatedconventionalTcells,CTLA4expressiononTregcellsisessentialforthedirectandindirectimmunosuppressiveactivityofthesecells34,35.InvitrostudiesshowedthatCTLA4wasnecessaryforanti-inflammatorycytokinereleasebyTregcells,whichreducespolyclonalactivationandproliferationofconventionalTcellsnearby36,37.ThisresultwasconfirmedinvivobyadoptivetransferofCTLA4-bearingTregcellstopreventautoimmunityinducedbyCTLA4-deficientTcellsthathadbeentransferredtoTcell-andBcell-deficientmice(Rag–/–mice)38,39.Thistreatmenteffectwasnullifiedbyantibody-mediatedneutralizationofCTLA4(refs38,40,41).Thus,Tregcell-expressedCTLA4cancompensateforlackofCTLA4expressionbyconventionalTcells42,43.Beyonddirectimmunosuppression,TregcellsalsoprimedendriticcellstoinduceanergyofconventionalTcellsinaCTLA4-dependentfashionbybindingtoB7ligandsonAPCs,followedbyinternalizinganddegradingthem,aprocesstermedtrans-endocytosis28,44.CTLA4blockadeincancerTherecognitionofCTLA4asanegativeregulatorofTcellactivationgaverisetotheideathatblockingitsactionscouldunleashatherapeuticresponseofTcellsagainstcancer45(Fig. 3).JamesAllisonandcolleaguesfirsttestedthisideaanddemonstratedthatneutralizinganti-CTLA4antibodiesenhancedantitumouralimmunityinmiceagainsttransplantedandestablishedcoloncarcinomaandfibrosarcoma46.Inaddition,duringrechallenge,animalstreatedwithanti-CTLA4wereabletorapidlyeliminatetumourcellsthroughimmunemechanisms,providingevidencethatblockingofCTLA4induceslong-lastingimmunologicalmemory46,47.AlthoughCTLA4-targetedmonotherapywasshowntoconferbenefitinanimalmodelsofbrain48,ovarian49,bladder50,colon46,prostate47andsofttissue46cancers,lessimmunogeniccancers,includingSM1mammarycarcinoma51andB16melanoma52,didnotrespondasfavourably.Furthermore,heterogeneitybetweencancermodelsyieldeddiscordanttissue-specificresults45,53.Inaddition,agreatertumourburdencorrelatedwithreducedtumourresponsestoanti-CTLA4treatmentbecauselargertumoursfosteramorerobustanti-inflammatorytumourmicroenvironment45,49.Fig.3:EffectsofCTLA4-blockingantibodies.CytotoxicTlymphocyteantigen4(CTLA4)-blockingantibodies(α-CTLA4),especiallywhenboundtoanFcreceptor(FcR)onanantigen-presentingcell(APC),canpromoteantibody-dependentcellularcytotoxicity(ADCC).CD4+CD25+regulatoryT(Treg)cellsexpresshigheramountsofCTLA4thanconventionalTcellsandarethereforemorepronetoα-CTLA4-inducedADCCthanconventionalTcells.Inaddition,α-CTLA4canbindtoCTLA4onthesurfaceoftheTregcellandpreventitfromcounter-regulatingtheCD28-mediatedco-stimulatorypathwaysthatareplayingaroleinTcellactivation.Atthesametime,α-CTLA4canalsopromoteTcellresponsesbyblockingCTLA4onthesurfaceofconventionalTcellsastheyundergoactivation.TCR,Tcellreceptor.Adaptedfrom©2019Fritz,J.M.&Lenardo,M.J.OriginallypublishedinJ.Exp.Med.https://doi.org/10.1084/jem.20182395(ref.135).FullsizeimageDespitethemixedsuccessinpreclinicalstudies,mAbstargetingCTLA4provedeffectiveinclinicaltrialsofmelanoma45.Ipilimumab,ahumanIgG1κanti-CTLA4mAb,gainedFDAapprovalin2011fornon-resectablestageIII/IVmelanomafollowingevidencethatitelicitedpotenttumournecrosis54andconferreda3.6-monthshort-termsurvivalbenefit55.Long-termsurvivaldatademonstratedthat22%ofpatientswithadvancedmelanomatreatedwithipilimumabbenefitedfromanadditional3yearsormoreoflife56.Additionallong-termstudieshavedemonstratedthedurabilityofthissurvivalbenefit,indicatingthepersistenceofantitumouralimmunityfollowingCTLA4blockade56,57.Unfortunately,trialresultsinrenalcellcarcinoma58,non-small-celllungcancer59,small-celllungcancer60andprostatecancer61haveyieldedlessimpressiveeffectsthanthoseseeninpatientswithmelanoma.Tremelimumab,anIgG2isotypeformofaCTLA4-blockingantibody,hasyettoreceiveFDAapprovalasitdidnotincreasesurvivalinadvancedmelanoma62.Itishypothesizedthateffectivenessvariesbetweenipilimumabandtremelimumabowingtodifferencesinbindingkineticsandthecapacitytomediateantibody-dependentcell-mediatedcytotoxicity63,64.ThemechanismsofCTLA4-mediatedtumourregressionarepleiotropicbutunifiedbytheactionofonecelltype,theTlymphocyte(Fig. 3).TcellresponsesarenecessaryforthetherapeuticeffectsofCTLA4-targetedagentsbecauseTcelldepletioninanimalmodelsabolishestumoricidalactivity65.InhibitionofCTLA4enhancesTcellclonalresponsestotumour-associatedneoantigensandahighneoantigenburdenportendsafavourableresponsetoanti-CTLA4therapy66,67.ApartfromboostingeffectorTcellresponses,anti-CTLA4therapydepleteslocalintratumouralTregcellsthroughantibody-dependentcell-mediatedcytotoxicityinmousemodelsandshiftsthebalanceofthetumourmicroenvironmentawayfromimmunosuppression68,69.Thisphenomenonrequiresfurtherstudyinhumancancerascurrentdataareinconclusive70,71.TherelativeroleofeffectorTcellsandTregcellsinconferringaclinicalbenefithasbeencontested,althoughspecificblockingofCTLA4inbothcellpopulationscanleadtosynergisticincreasesintumourregression69.Overall,currentdatasuggestthatthemostcriticalfactorinpredictingoutcomeistheratioofeffectorTcellstoTregcellsinfiltratingthetumour45,49.PD1/PDL1biologicalfunctionPD1wasfirstidentifiedin1992asaputativemediatorofapoptosis,althoughlaterevidencesuggestedaroleinrestrainingimmunesystemhyperactivation,analogoustoCTLA4(ref.72).Asatype1transmembraneglycoproteinwithintheimmunoglobulinsuperfamily,PD1exhibitsa20%and15%aminoacididentitytoCTLA4andCD28,respectively73.HumanPD1isexpressedonTcellsafterTCRstimulationandbindstheB7homologuesPDL1(alsoknownasB7-H1)andPDL2(alsoknownasB7-DC),whicharepresentconstitutivelyonAPCsandcanbeinducedinnon-haematopoietictissuesbypro-inflammatorycytokines74,75,76.Inthisreview,werefertoPD1anditsligandsasthe‘PD1axis’.ThepredominantroleofthePD1axisinthenegativeregulationofTcellactivationbecameclearin1999whenlossofthemousePD1orthologue,Pdcd1,wasfoundtocauseautoimmunityinvivo.C57BL/6micelackingfunctionalPD1proteindevelopedsplenomegaly77.AgeingoftheseanimalsledtomildTcell-mediatedlupus-likeglomerulonephritisandarthritisthatwasexacerbatedbyconcurrentlprmutationsintheFasgene78.CharacterizationofadditionalmousestrainsshowedthatPdcd1–/–miceoftheBALB/cstrainexhibitedcardiacinflammationleadingtodilatedcardiomyopathy79.Bycomparison,non-obesediabeticPdcd1–/–micehadacceleratedtype1diabetesmellituscomparedwiththeirPdcd1-sufficientcounterparts80.Theheterogeneousandlate-onsetautoimmunephenotypesofPdcd1–/–miceweredistinctfromCtla4–/–animals,demonstratingthatthePD1axisregulatesTcellbiologydifferentlytoCTLA4.Spatially,CTLA4exertsitsregulatoryeffectpredominantlywithinlymphoidorgans,whereasPD1tendstowardstemperingTcellactivationlocallywithinperipheraltissues8.Temporally,PD1actslaterinthecourseofTcellactivationandfatedetermination.Overall,thePD1axisplaysauniqueroleinmaintainingTcelltolerancetoself.PD1restrainsimmuneresponsesprimarilythroughinhibitoryintracellularsignallingineffectorTcellsandTregcells81.Theimmunoreceptortyrosine-basedswitchmotifandtheimmunoreceptortyrosine-basedinhibitorymotifofPD1arephosphorylatedandrecruitthephosphatasesSHP1andSHP2,whichdephosphorylate,andtherebyinactivate,downstreameffectors(thatis,theCD3ζ-subunitandZAP70)thatareimportantforearlyTcellactivation76andCD28signalling82.BothCTLA4andPD1inhibitproteinkinaseB(PKB;alsoknownasAKT)signallingtoreduceglucoseuptakeandutilization,theformerthroughPP2Aandthelatterbyreducingphosphoinositide3-kinase(PI3K)activity83.IncontrasttoCTLA4,thePD1axisisessentialforcontrollingthecontinuedactivationandproliferationofdifferentiatedeffectors;whenPD1engagesitsligands,itcaninduceastateofTcelldysfunctioncalledTcellexhaustion84,85,86.However,whatdetermineswhetherPD1mediatesexhaustionorapoptosisincertaincontextsisstillanactiveareaofresearch.OnemodelsuggeststhattheinteractionbetweenPI3KsignallingandthemitochondrialBcelllymphoma-extralarge(BCL-XL)proteinisacriticalcontrolpointatwhichPD1-mediatedP13KinhibitionreducesBCL-XLandpromotesapoptosis25,83.BeyondregulatingconventionalTcells,PDL1onAPCscancontrolTregcelldifferentiationandsuppressiveactivity87.Unfortunately,tumourcellscanexploitthismechanismbyupregulatingPD1ligandstoinduceTcellexhaustionandgenerateatumourmicroenvironmentthatfacilitatestumourgrowthandinvasion88.PD1/PDL1blockadeincancerOncethePD1axiswasimplicatedinthenegativeregulationofTcells,preclinicalworkexaminedwhetherinhibitorsofthispathwaycouldbeusedforcancertreatmentandbiomarkerdiscovery.First,overexpressionofPDL1orPDL2incancercelllineswasfoundtoconstraintheCD8+Tcellcytotoxicantitumourresponse,whereastumourswererejectedinmicewithoutfunctionalPD1(refs89,90).Second,blockadeofPD1suppressedthegrowthoftransplantedmyelomacellsinsyngeneicanimals90.Conversely,transplantedcellsoverexpressingPDL1orPDL2insyngeneicmiceallowedforincreasedtumourcolonization,burdenandinvasiveness90.NeutralizingthePD1axisusingmAbs89,91orsecretedPD1extracellulardomains92reversedtheseeffectsandenhancedTcellcytotoxicitytowardstumourcells90(Fig. 4).RescuingCD8+TcellcytotoxicitybyPD1blockadedependsontheexpressionofCD28asPD1-mediatedimmunomodulationislostinthecontextofCTLA4Ig,B7blockadeorCD28conditional-knockoutmice92.Inaddition,reinvigoratedTcellsintheperipheralbloodofpatientswithlungcancerfollowingPD1blockadewereshowntoexpressCD28(ref.93).PD1inhibitionnotonlyaugmentsantitumouralimmunitybutalsolimitshaematogenousseedingofB16melanomaandCT26coloncarcinomametastasesinmousemodels94.Thus,PD1/PDL1blockadecanbothenhancetumourcytolysisandlimitmetastasis.ApartfromaroleofPD1anditsligandsincancertreatment,multiplestudieshavealsoshownanegativecorrelationbetweenhumantumourexpressionofproteinsinvolvedinthePD1axisandprognosis,indicatingtheutilityoftheseproteinsaspotentialbiomarkers95,96,97.Fig.4:MechanismsofPD1axisinhibition.ActivatedTcellsexpressprogrammedcelldeath1(PD1),whichengageswithitsspecificligand(PDL1orPDL2)todampenactivation.BlockingofthePD1axisthroughtheadministrationofananti-PD1(oranti-PDL1oranti-PDL2)antibodypreventsthisinhibitoryinteractionandunleashesantitumouralTlymphocyteactivitybypromotingincreasedTcellactivationandproliferation,byenhancingtheireffectorfunctionsandbysupportingtheformationofmemorycells.Consequently,moreTcellsbindtotumourantigenspresentedontumourcellsbyMHCmoleculesviatheirTcellreceptors(TCRs).Thisultimatelyleadstothereleaseofcytolyticmediators,suchasperforinandgranzyme,causingenhancedtumourkilling.APC,antigen-presentingcell.Adaptedfrom©2019Fritz,J.M.&Lenardo,M.J.OriginallypublishedinJ.Exp.Med.https://doi.org/10.1084/jem.20182395(ref.135).FullsizeimageFollowingpreclinicalsuccess,mAbsdesignedtocounteractnegativeimmunoregulationbythePD1axisweredevelopedandefficacywasshowninclinicaltrials98.DevelopmentwasinitiatedbyMedarex(ultimatelypurchasedbyBristol-MyersSquibb)in2001(ref.99).In2010,aphaseItrialdemonstratedthatPD1blockadewaswelltoleratedandcouldpromoteantitumouralresponses100.In2014,thehumanizedandfullyhumananti-PD1mAbspembrolizumabandnivolumab(bothIgG4)becamethefirstFDA-approvedPD1-targetedtherapeuticsforrefractoryandunresectablemelanoma101,102,103,104.Inahead-to-headcomparison,pembrolizumabshowedbetter6-monthprogression-freesurvivalthanipilimumabandconferredanoverallsurvivalbenefit105,106.Clinicaltrialsofnivolumabdemonstratedanoverallsurvivalof72.9%at1yearcomparedwith42.1%survivalinthegroupofpatientstreatedwiththechemotherapeuticdacarbazine104.In2015,pembrolizumabwasapprovedforthetreatmentofPDL1-expressingnon-small-celllungcarcinomabecauseitprovideda4.3-monthincreaseinprogression-freesurvivalcomparedwithplatinum-basedchemotherapeuticsandwasmoreeffectivethanthechemotherapeuticpaclitaxel107,108.IncreasedPDL1expressiononthetargettumourwasassociatedwithimprovedresponsestoPD1axisblockade109.Additionalsuccessfulclinicaltrialsexpandedtheuseofpembrolizumabtoheadandnecksquamouscellcarcinoma110,Hodgkinlymphoma111,urothelialcarcinoma112,gastric/gastro-oesophagealjunctioncancer113andtissue-agnosticcarcinomawithahighdegreeofmicrosatelliteinstability114.Followingapprovalintissue-agnosticcancerswithmicrosatelliteinstability,pembrolizumabbecamethefirstdrugtobeapprovedbasedonamolecularbiomarkerratherthanbycancersite.However,theimmunosuppressivemicroenvironmentofdifferenttissuesmakesithardtopredictwhichpatientswillbenefit115,116.Similartoprembrolizumab,theuseofnivolumabhassincebeenextendedtorenalcellcarcinoma117,headandnecksquamouscellcarcinoma118,urothelialcarcinoma119,hepatocellularcarcinoma120,Hodgkinlymphoma121andcolorectalcancerwithahighdegreeofmicrosatelliteinstability122.Aswasseenwithanti-CTLA4therapy,long-termsurvivalanalysesdemonstratealong-lastingimmune-mediatedsurvivalbenefitfollowingPD1blockade123.However,thereasonwhyPD1blockadehasdemonstratedbroaderclinicalutilitythananti-CTLA4treatmenthasremainedelusive.ItishypothesizedthatthedifferencemaybebecausethePD1axisisfrequentlyco-optedbytumoursvialigandexpression,whereasCTLA4representsabroaderimmunoregulatorycircuit74,124.PDL1isalsotargetablebyspecificantibodiesthathaveproveneffectivetreatmentsinmultipleformsofcancer.In2016,thefirstPDL1-targetedhumanizedmAb,atezolizumab(anIgG4antibody),wasapprovedfortreatmentofurothelialcarcinoma.Anoverallresponserateof15%wasdeemedstatisticallysignificantbasedonhistoricalcontroldata,althoughresponsesweredependentontumourPDL1expressionstatus125.Unfortunately,additionaltrialdatahavenotdemonstratedthatatezolizumabhasclinicalefficacybeyondthestandardofcareinurothelialcarcinoma,althoughitislesstoxicthantraditionalchemotherapy126.Indicationshavesinceexpandedtoincludethetreatmentofnon-small-celllungcarcinoma127,triple-negativebreastcancer128andsmall-celllungcancer129.Additionalanti-PDL1humanmAbs,avelumabanddurvalumab,enteredthemarketin2017(ref.98).AvelumabisusedforthetreatmentofMerkelcellcarcinoma130,urothelialcarcinoma131andadvancedrenalcellcarcinoma132.Duvalumabisusedforurothelialcarcinoma133andnon-small-celllungcancer134.Therefore,similartoPD1,blockadeofPDL1hasbeeneffectiveindifficult-to-treatformsofcancer.AdverseeffectsofcheckpointblockadeBlockinganaturallyoccurringcentralimmunecheckpointunleashespowerfulimmuneeffectormechanismsthatmaynotrespectthenormalboundariesofimmunetolerancetoself-tissues135.Ctla4-andPdcd1-knockoutmiceprovidedaglimpseintothespectrumofautoimmuneresponsesthatoccurinhumansduringimmunecheckpointblockadetherapy19,77,78,79.Humanloss-of-functionmutationsinCTLA4anditsinteractingregulatoryprotein,LRBA,alsomirrortheimmune-relatedsideeffectsobservedwithanti-CTLA4therapy13,24.Onthebasisofameta-analysisoftrialdatasets,immune-relatedadverseeventsareestimatedtooccurin15–90%ofpatients55.Moresevereeventsrequiringinterventionareobservedin30%and15%ofpatientstreatedwithCTLA4andPD1axisinhibitors,respectively136.ThecommonimmunefeatureoftoxicityisthelossofnaiveTcellsandtheaccumulationofoveractivememoryTcellsthatinvadeperipheralorgans,suchasthegastrointestinaltractandlungs,andcauseinflammatorydamage.Keratinizedandnon-keratinizedmucosaappeartobethemostsusceptible,asapproximately68%and40%oftreatedpatientsexhibitpruritisandmucositis,respectively137,138.Anti-CTLA4therapycarriesanincreasedriskofsevereautoimmunecomplicationscomparedwiththerapiestargetingthePD1axis,aswasobservedinknockoutmiceandinclinicalstudies19,77,78,79,80,139.Inaddition,datafromdose-escalationtrialssupporttheclaimthatanti-CTLA4agentselicitdose-dependentresponsesnotseenwiththerapiestargetedatthePD1axis107,139.Toxicitiesaffectingthegastrointestinaltractandbrainaremorecommonwithanti-CTLA4therapy,whereaspatientstreatedwithPD1axis-targetedtherapiesareathigherriskofhypothyroidism,hepatoxicityandpneumonitis137.However,asthenumberofindicationstreatedwithcheckpointblockadeincreasesandmorepatientsaretreated,rarersideeffectsinawiderspectrumoforgansandheterogeneousresponseshavemanifested137.Forexample,hyperprogressionofdiseasehasbeenobservedinaminorityofpatientswithvarioustumourtypestreatedwithPD1inhibitors140,141,142.Mostrecently,itwasshownthatthePD1inhibitornivolumabcanleadtotherapidprogressionofdiseaseinpatientswithadultTcellleukaemia/lymphoma,providingevidenceforaroleoftumour-residentTregcellsinthepathogenesisofthislymphoma143.Multipleimmune-relatedresponsecriteriahavebeendevelopedtobettercategorizepatientresponsestocheckpointblockade.Inaddition,thesecriteriaaimtodistinguishprogressionfrompseudoprogression,aphenomenoninwhichpatientstreatedwithCTLA4orPD1inhibitorsexperienceaperiodofprogressionfollowedbyrapidtumourclearance144,145.Overall,checkpointblockadeleadstoautoimmunetoxicitieswithatherapy-specificpatternoforganinvolvement,aspredictedbythephenotypesofanimalsgeneticallydeficientforcheckpointmolecules.Interestingly,preclinicalimmunecheckpointtherapystudiesdidnotdemonstratemajoradverseeffectsinvivoand,thus,werenotgreatpredictorsofhumantoxicities146.Thisisthoughttobeduetotheshorttimeframeofthesestudiesandtheinbrednatureofmousestrains146.Recentlydevelopedhumanizedmousemodelsrepresentaplatformthatbetterrecapitulatessideeffectsduetocheckpointtherapy146,147.Nevertheless,toxicityassociatedwithimmunecheckpointblockadeistoleratedbetterthanthetoxicitiesassociatedwithtraditionalchemotherapeutics,makingthesetherapiesattractiveforqualityoflifereasonsbeyondtheirsurvivalbenefit98,148.Recentresearchhasaimedtoimprovetheside-effectprofilesandclinicalresponseofimmunecheckpointblockadethroughthemodificationofexistingantibodiesandtheengineeringofnoveldeliverymethods.ItwasrecentlyshownthatabnormalCTLA4recyclingandsubsequentlysosomaldegradationwasamechanismthatcontributestotoxicitiesandreduceddrugeffectiveness.ModifiedpH-sensitiveantibodiesthatdonotinterferewithLRBA-mediatedCTLA4recyclingwereshowntolimitadverseeventsandimproveclinicaloutcomesinestablishedtumoursinmousemodels,whichmayultimatelybroadenclinicalutility149,150.Additionalresearchhasfocusedondevelopingbiomaterialsforthelocalizedadministrationofcheckpointinhibitors151.Forexample,comparedwithsystemicdelivery,transdermalpatchdeliveryofanti-PD1antibodieswasbettertoleratedandunleashedamorerobustantitumouralresponseinamousemodelofmelanoma151.Abroadfieldofresearchiscurrentlyaimedatdiscoveringnovelmethodstoreducetoxicitiesassociatedwithcheckpointtherapyandtoincreaseclinicalbenefitinagreatervarietyoftumours.Clinicalmanagementofdrug-relatedtoxicitiesisthesameforallcheckpointdrugs,andtoxicitiesaregradedaccordingtothe2009NationalCancerInstituteCommonTerminologyCriteriaforAdverseEventsseverityscale137,152.Mild(grade1)toxicitiesarenottypicallytreated.Inthesettingofgrade2or3adverseevents,checkpointinhibitorsarediscontinueduntilsymptomsandlaboratory-valueabnormalitiesresolve.Glucocorticoidsarealsousedtoeffectivelycontrolimmunehyperactivity.Infliximabandotherimmunosuppressiveagentscanbeusedwhenglucocorticoidsfail.Life-threatening(grade4)toxicitiesnecessitatethecompletediscontinuationoftherapyandtheuseoflife-savingmeasures,asrequired.Activemonitoringofsymptomsandlaboratoryparametersisrecommendedinordertopreventdeathduetocheckpointblockade(grade5).Currentresearchisaimedatidentifyingpredictivebiomarkersfororgan-specifictoxicitiesduetocheckpointtherapy.Forexample,neutrophilactivation,asmeasuredbyincreasedexpressionofthebiliaryglycoproteinCEACAM1andthecellsurfaceglycoproteinCD177,correlateswithgastrointestinal-relatedsideeffectsinpatientstreatedwithipilimumab153.Increasesineosinophilcountsandreleaseofthepro-inflammatorycytokineIL-17areassociatedwithtoxicityregardlessoftheorganaffected154,155.Pharmacogenomicprofiling(usinggeneticinformationtopredictresponsestodrugs)mayprovidemoreinsightintotherelevantgenesandpathwaysmediatingtoxicity137.Ultimately,thehopeisthatgenetic,biochemicalormetabolicprofilingcouldeitherpre-screenorrapidlydetectindividualslikelytoexperiencethemostsevereadversereactionstocheckpointtherapy.AdoptiveTcelltransfertherapyAdoptiveTcell(ATC)therapy,inwhichautologousorallogenicTcellsareinfusedintopatientswithcancer,hasshownconsiderablepromiseinrecentyears.TheviabilityofthistypeoftherapywasfirstshownbySouthametal.in1966,whenhalfofthepatientswithadvancedcancerdemonstratedtumourregressionfollowingco-transplantationwithpatient-derivedleukocytesandautologoustumourcells156.Allogenichaematopoieticstemcelltransplantsforleukaemiarepresentedthefirsteffectiveadoptivetransferapproachdeployedclinically,andclinicalimprovementwasshowntobemediatedbyaTcellgraftversustumourresponse157.ATCwithtumour-infiltratinglymphocytesATCtherapyusingtumour-infiltratinglymphocytes(TILs)forthetreatmentofmetastaticmelanomawaspioneeredattheNationalCancerInstituteinthelate1980s158.LymphocytesisolatedfromacancerbiopsyweregreatlyexpandedwithIL-2andthenreinfusedintravenouslyintothesamepatientwithalargebolusofIL-2.Theobjectiveresponseratewas34%;however,themediandurationofresponsewasonly4monthsandfewpatientsexperiencedacompleteresponse159.LaterstudiesincorporatinglymphodepletionbeforeATCtherapyin93patientswithmetastaticmelanomaweremoresuccessful,withcompletetumourregressionin20(22%)patients,19ofwhomwerestillincompleteremission3yearsaftertreatment160.Thescreeningandenrichingforneoantigen-specificTILs,madepossiblebyhigh-throughputtechnologies,recentlydemonstratedpromiseinapatientwithmetastaticbreastcancer161.Inaddition,knockdownofthegeneencodingcytokine-inducibleSH2-containingprotein(Cish),anegativeregulatorofTCRsignalling,wasshowntoboosttheantitumouralresponseofATCtherapyinmousemodels162.However,inorderforTIL-basedATCtherapytoelicitdurableresponses(Fig. 5),effectorTcellswithantitumouractivitymustbepresentinthetumour,whichisnotthecaseformanycancertypes163.OtherinnovativeapproachestotweakTcellactivityandproliferationmayallowforagreaterpaletteoftreatmentstobedeveloped.Fig.5:AdoptiveTcelltherapy.a|Tumour-infiltratinglymphocytes(TILs)areisolatedfromapatienttumourbiopsyandexpandedexvivowithIL-2.TILsaretheninfusedintoapatientwhohasundergonelymphodepletiontoprovideanicheforthetransferredTILstoexpand,actaseffectorcellsandgenerateimmunologicalmemory.AstheTcellswerederivedfromthetumour,itisassumedthatagoodproportioncanrecognizetumour-associatedantigens(TAAs)orneoantigens.b|ThephysiologicalTcellreceptor(TCR)complexgainsitsspecificityfrompolymorphicα-andβ-glycoproteinchainsthathaveanantigen-bindingportionandaconserveddomainthatassociatewithandsignalthroughagroupofnon-polymorphicproteins,CD3γ,δ,εandζ.BioengineeringoftheTCRα-andβ-glycoproteinantigen-bindingdomain(purple),whilepreservingtheconserveddomains(CαandCβ),allowsforthedevelopmentandexpansionofTlymphocyteswithspecificitytotumourneoantigens.c|Originally,chimericantigenreceptors(CARs)werecomposedofanextracellularsingle-chainfragmentofanantibodyvariableregioncoupledtoaCD3ζ-signallingdomain.Poorexpansionandfunctionalityofthesefirst-generationCARsledtothedevelopmentofsecondandthird-generationCARscontainingintracellularmodulesfromco-stimulatorymolecules(CD28and/or4-1BB)thatprovideadditionalsignalsnecessarytofullyactivatetheTcell.SubsequentgenerationsofCARTcellscontainfurthermodificationstoimproveantitumourefficacy.Forexample,fourth-generation‘armoured’CARTcellshavebeenengineeredtosecretepro-inflammatorycytokines,suchasIL-12,toovercomeimmunosuppressioninthetumourmicroenvironment.Thechimericcytokinereceptor4αβ,comprisingtheectodomainofIL-4RαfusedtotheIL-2/IL-15Rβchain,signalsinresponsetoIL-4,anabundantcytokineinnumeroustumourtypes.VH,variableheavychain;VL,variablelightchain.FullsizeimageEngineeredlymphocytesforATCThechallengesassociatedwithexpandingtumour-specificTcellsinvitroledtothedevelopmentofTCR-engineeredlymphocytes(Fig. 5).However,thesecellsarelimitedtorespondingtotumourantigenspresentedbytheMHC(alsoknownashumanleukocyteantigen(HLA)inhumans)ratherthansurfaceantigensontumourcells163.However,syntheticchimericantigenreceptors(CARs)canbypassMHCrestrictionanddirectspecificcytotoxicitytoatargetmoleculeonthesurfaceofthemalignantcell.IsolatedTcellsfromthepatient(orallogeneicdonor)aregeneticallymodifiedtoexpressCARsandthenexpandedandinfusedintothepatient.ThisovercomestheproblemthattumourcellsoftendownregulateMHCmolecules,whichleavesthecellunabletopresentantigentoconventionalTcells164.CARscompriseanantigen-bindingdomain,mostoftenfromthevariableregionsofantibodies,linkedtosignallingdomainsoftheTCRandvariousco-stimulatorymolecules(Fig. 5).Giventhedomainmodularityofcellsurfacesignallingproteins,mixesandmatchesofextracellulartargetingdomainsandinternalsignaltransductiondomainscanbeassembledusingproteinengineering.ThisoffersmanyoptionstotailorCARstospecifictumours.ThefirstgenerationofCARTcellsreliedonlyontheCD3ζ-chaintosimulateTCRsignalling165,butthisdesignwasineffectiveinclinicaltrialsowingtolimitedTcellproliferationandcytokineproduction166,167.SubsequentgenerationsofCARTcellshavebeenengineeredtoincludedomainsfromCD28,CD40ligandandotherpositiveregulatorsofTcellactivationtopotentiateactivationandcytotoxicityinvivo168,169,170,171.Anengineeredsingle-chainPD1blockerhasalsodemonstratedsimilarenhancedefficacytosecond-generationCARTcellswithsolelyaCD28domain172.EventhoughCARTcellsaretypicallyengineeredusingretroviraltransduction,recentworkhasusedCRISPR–Cas9technology.CRISPR–Cas9canbeusedtoedittheTCRgermlinesequencedirectly,whichcouldleadtomoreuniformCARTcellgenerationand,ultimately,betterefficacy173.AlimitationtothedevelopmentofCARTcelltherapiesistherequirementforadistincttissue-restrictedtargetantigenonthetumourcellsurface.Forexample,CARTcellsdesignedwithspecificityforthecellsurfacemoleculeCD19,whichisexpressedbyallBcells,havebeensuccessfulinthetreatmentofBcellmalignancies.Thefirstclinicaldeploymentofsecond-generationCD19-specificCARTcellsledtodurableresponsesinchroniclymphocyticleukaemia174.AdditionalclinicaltrialsofCD19-specificsecond-generationCARTcellsinBcellacutelymphoblasticleukaemia(B-ALL)ledtoremissioninallpatientswithB-ALLwhoweretested175.Afollow-upreportonpatientswithB-ALLenrolledinthisclinicaltrialshowedcompleteremissionofdiseasein44of53(83%)patientswithamedianfollow-upof29months176.SimilarsuccesseswerereportedforpatientswithdiffuselargeBcelllymphoma177,leadingtoFDAapprovalfortheseBcellmalignanciesin2017.TheclinicalsuccessofCARTcelltherapyforthetreatmentofB-ALLanddiffuselargeBcelllymphomaisdue,inpart,totargetingtheCD19antigen,anidealcandidateowingtoitshighexpressionincertainBcellmalignanciesandspecificitytotheBcelllineage.CrossovertargetingofnormalCD19+Bcellsdoesnothampertherapyorcauseseveresideeffects.However,evenasanidealtarget,CD19antigenlossisacommoncauseoftreatmentfailure.CD22isanotherantigencommonlyexpressedbymalignantcellsinB-ALLandhasshownpromiseasatargetforCARTcelltherapyinaphaseItrial178.Othertargets,especiallytumourneoantigens,arecurrentlybeinginvestigatedforhaematologicalmalignanciesthatdonotexpressCD19,aswellasforsolidtumours179,180.Bcellmaturationantigen(BCMA)-targetedCARTcelltherapyispoisedforFDAapprovalformultiplemyelomain2020onthebasisofpromisingpreclinicalandclinicaldata181,182.However,owingtoreportedpatientrelapses,theinvestigationofadditionaltargetantigenscontinues.Apreclinicalstudyrecentlyidentifiedanothertargetantigen,GPRC5D,withcomparableefficacyandtoxicitytoBCMA-targetedCARTcelltherapy183.Thusfar,CARTcelltherapyhasonlybeenmodestlysuccessfulforsolidtumours184,185,186andinnovativeapproachestoimprovetherapyareunderway179.Arecentlyidentifiedpan-cancertarget,B7-H3(alsoknownasCD276),hasdemonstratedsuccessinmultiplepaediatricsolidtumourmodels187.Inadditiontodirectlyactingascytolyticagents,CARTcellscanalsotargettheunhospitabletumourmicroenvironmentandreviveexhaustedTcells188,189.Forexample,anewgenerationof‘armoured’CARTcellsengineeredtoproduceIL-12canovercomeimmunosuppressionbyTregcellsandmyeloidcellsinthetumourenvironment,promoteCD8+Tcellcytolyticactivity190andenhancemyeloidcellrecruitmentandantigenpresentation191,192.PreclinicalmodelsusingIL-12-expressingCARTcellsthattargettheconservedextracellulardomainofmucin16(MUC16ecto)haveshownpromisingresultsinmodelsofovariancancer,atumourwithpoorprognosisinadvancedstages193,194.AphaseIclinicaltrialiscurrentlyinprogressforpatientswithovarian,fallopianorprimaryperitonealcancer195.TheefficacyofCARTcellsmayalsobestrengthenedthroughco-expressionofachimericcytokinereceptor(4αβ)thatstimulatesproliferationinresponsetoIL-4,acytokinethatisusuallyabundantinthetumourmicroenvironment.PreliminarystudieshaveshownthatthisapproachworksforCARTcellsdirectedagainstdifferenttumour-associatedantigens(TAAs)196andclinicaltrialsareunderwayinheadandneckcancer197.Inaddition,overexpressionofthetranscriptionfactorJUNwasshowntoconferresistancetoCARTcellexhaustion198.Overall,CARTcellshavebeensuccessfulforthetreatmentofBcellmalignanciesanditwillbeexcitingtocontinueresearchonthisnewtreatmentmodalityforintractabletypesofcancer.LimitationsandadverseeffectsofATCsToxicitiescanarisefromCARTcelltherapyandaffectmanydifferentorgansystemswitharangeofseverity199.Patientsmostcommonlyexperiencecytokinereleasesyndrome(CRS)andneurotoxicity200.CRSresultsfromthepowerfulactivationandproliferationofCARTcellsinvivoandtypicallyappearsquicklyaftercelltransfer.Thesymptomsareoftenmildandflu-likebutcanalsobesevereandlife-threatening,involvinghypotension,highfever,capillaryleakage,coagulopathyandmultisystemorganfailure.Seriousneurologicaleventscanalsooccur,suchasCARTcell-relatedencephalopathysyndrome,typicallycharacterizedbyconfusionanddelirium,butsometimesalsoassociatedwithseizuresandcerebraloedema199.Glucocorticoidsarethefirst-linetreatmentformilderformsofCRSandCARTcell-relatedencephalopathysyndrome.Tocilizumab,ahumanizedanti-IL-6antibody,isahighlyeffectivesecond-linetreatmentforCRScausedbyCARTcelltherapy201.OthersideeffectsofCD19-specificCARTcelltherapyincludelymphopeniaandhypogammaglobulinaemia202,whichcanbeeffectivelymanagedwithintravenousimmunoglobulintherapy,similartothetreatmentthatpatientswithprimaryBcellimmunodeficienciesreceive203.Themechanismsbehindthesesideeffectsareunclearandfurtherresearchmayyieldwaystoavoidorminimizetoxicity.RecentdevelopmentofanovelmurinemodelofCRSdemonstratedthatitisnotmediatedbyCARTcell-derivedIL-6butratherbyrecipientmacrophagesthatsecreteIL-6,IL-1andnitricoxide.Therefore,IL-1blockaderepresentsapossiblenovelinterventioninthearmamentariumagainstCRS204.Moreover,aclinicalstudyoflow-affinityCD19-specificCARTcellsdemonstratedreducedtoxicityandenhancedefficacy205.AdditionaleffortstoreducetoxicityinvolvetheengineeringofCARTcellswithmultiplereceptorspecificities206andreducingthehalf-lifeofcellulartoxicitybyusingmRNA-basedmethodsthatallowfortransientreceptorexpression207orincludingsuicidecassettesthatcanbeactivatedbyexogenousagentstoclonallydeletetheinfusedcells208.TheATCapproachnecessitatesapatient-specifictherapydesign,itscostcanbeprohibitive,patientaccesstothetreatmentislimitedandmanufacturingischallenging.IntheUnitedStates,theCARTcelltherapiestisagenlecleucelandaxicabtageneciloleucelhaveadirectcostofUS$475,000andUS$373,000perpatient,respectively209.However,thesevaluesdonottakeintoaccounttheadditionalcostsassociatedwithtreatingthesevereadverseeffectscommontoCARTcelltherapy,whichareestimatedtoincreasedrug-associatedcostsbyUS$30,000ormore209.IncomparisonwithCARTcelltherapy,checkpointblockadehasapricetagofapproximatelyUS$12,500permonth210.PatientaccesstoCARTcelltherapiesalsorepresentsamajorproblemasthereareonlyafewlaboratoriescertifiedtogenerateCARTcellsandonlyafewspecializedtertiarycarecentresabletoadministerthistherapy211.Lastly,variabilityinthemanufacturingofCARTcellsandalackofstandardpracticescancontributetoheterogeneousoutcomes211.CancervaccinesCancervaccinesprompttheimmunesystemtoprotectthebodyfromcancerandfallintotwocategories,prophylacticandtherapeutic.ProphylacticvaccinesagainsthepatitisBandhumanpapillomavirushavebeeninstrumentalinreducingtheincidenceofhepatocellularcarcinomaandcervicalcancer,respectively212.Theseareclassicvaccinesusedtopreventinfectionbyoncogenicviruses.Bycontrast,therapeuticvaccinesaimtoharnesstheimmunesystemtoeliminatedisease-causingcellsthatarealreadyneoplastic212.AnearlyexampleofthisistheuseofthebacillusCalmette–Guérinvaccine,comprisingattenuatedMycobacteriumbovis,whichisgenerallyusedasaprophylactictuberculosisvaccinebuthasalsobeenrepurposedasaprimitivetherapeuticvaccineforbladdercancer213.Historically,thediscoveryofTAAs214,whicharehighlyexpressedontumourcellsandtoalesserextentonnormaltissues,openedthedoorforfurthertherapeuticvaccine-basedapproaches.However,asTAAsareoftenrecognizedbytheimmunesystemas‘self’,viralantigensandneoantigensthatareuniquetoamalignancymaybemoresuitedasvaccinetargets.Earlyvaccinationapproachesinthe1970swerebasedonautologoustumourvaccinesandinvolvedtheadministrationofpatient-derivedtumourcellstogetherwithanadjuvantorvirusinordertoactivatepolyclonalimmuneresponsestoTAAs215.Forexample,autologoustumourcellsinfectedwithNewcastlediseasevirushavebeenusedinonetypeofcancervaccinethathasdemonstratedsuccessinpreclinicalmodelsofmetastaticlymphomaandmelanoma216,217.ModifiedNewcastlediseasevirus-basedvaccineshavebeenengineeredtoexpressgranulocyte–macrophagecolony-stimulatingfactor(GM-CSF)inattemptstoenhanceefficacy218.Synergismofvaccineapproacheswithcheckpointblockadeagentshasalsobeendemonstratedinsomepreclinicalstudiesofmelanoma46,219.NumerousautologoustumourvaccinesarebeinginvestigatedinphaseIIandphaseIIItrialsbuthaveyettoreceiveFDAapproval.Thisapproachsuffersfrommultiplelimitations,mostnotablythedifficultyinobtainingpatient-derivedtumourcellsincertaincancertypes212.Newerapproachesincludethedevelopmentofpersonalizedrecombinantcancervaccinesinformedbynext-generationsequencingofgenomicDNAfromtumours.DevelopmentofpersonalizedrecombinantcancervaccinesVaccinesthatelicitresponsestotumour-derivedneoantigensshouldinducemorerobustimmuneresponsesandcausefewerautoimmune-relatedtoxicitiesthanvaccinesbasedonself-derivedTAAs,astheTcellsthatareactivatedbysuchavaccinewouldnothaveundergonenegativeselectionduringdevelopment.Thesefactors,aswellastheabilitytoidentifyneoantigensthroughnext-generationsequencingofgenomicDNAfromtumours,hasshiftedthefocustoinvestigatingtheclinicalfeasibilityofmakingpersonalizedrecombinantvaccinesthattargetneoantigens.However,althoughahighermutationalburdeninthetumourhasbeenshowntocorrelatewithgreaterimmunogenicityandsurvivalaftercheckpointblockade66,220,onlyasmallpercentageofneoantigensspontaneouslygenerateimmuneresponsesinpatientswithcancer221.Sahinandcolleaguesshowedthatneoantigensidentifiedthroughnext-generationsequencingcangenerateantitumourresponsesinvivo;inmicethatwerevaccinatedwith50differentneoantigens,16wereimmunogenic222,223.Interestingly,mostneoantigensinducedcytokineresponsesfromCD4+TcellsratherthanCD8+Tcells,suggestingthatneoantigensareselectedforMHCclassIIbinding222,223.OtherpreclinicalstudiesdemonstratedeffectiveCD4+andCD8+Tcellresponsestoneoantigenvaccinesinvariouscancertypes223,224,225,226,227.However,recentpreclinicalworkhasalsohighlightedthenon-overlappingroleofneoantigenresponsesmediatedbyCD4+andCD8+Tcells228.Todesignandmanufactureapersonalizedvaccineforclinicaluse,computer-basedalgorithmsareusedtoidentifywhichtumour-derivedpeptidescouldpotentiallyformasuitableTAAortumourneoantigenwiththepatient’sMHCalleles(Fig. 6).Thereareseveraldifferentstrategiestoformulateneoantigen-basedvaccines,includingassyntheticpeptides,mRNA,viralandDNAplasmidsorantigen-loadeddendriticcells,anditisdifficulttodirectlycomparehoweachstrategyinfluencesimmunogenicity229,230.Inonetrialthattestedamulti-peptidevaccinethatincludedupto20personalneoantigens,4of6patientswithmelanomawhoenteredthestudywithstageIIIdiseaseexperiencedcompleteresponseswithnorecurrence25monthspostvaccination,andtheother2patientswithprogressivediseasesubsequentlyunderwentanti-PD1therapythatresultedincompletetumourregression231.Further,ofthe97differentneoantigensthatweretestedforimmunogenicityinthisstudy,60%elicitedCD4+Tcellresponseswhereas15%elicitedCD8+Tcellresponses.Anotherclinicaltrial,whichtestedanRNAvaccinethatencoded10peptidesrepresentingpersonalizedTAAsin13patientswithadvancedmelanoma,achievedsimilarresults232.Fig.6:Personalizedvaccinedevelopment.HealthytissueandtumourtissuefromapatientwithcanceraresubmittedforDNAsequencingandbioinformaticanalysestoidentifygenevariantsthatencodepeptidesthatarespecifictothetumour(neoantigens).Predictionalgorithmsarethenusedtoscreenforneoantigensthatarelikelytostablybindtothepatient’sMHC(alsoknownasHLAinhuman)moleculesandtheirexpressionisvalidatedbysequencingtumourmRNA.Multiplepredictedneoantigensarethenformulatedintovaccines,whichareadministeredtothepatienttogetherwithadjuvants.Posttreatment,thepatientisregularlymonitoredforneoantigen-specificimmuneresponsesandtumourgrowth.FullsizeimagePitfallsandadverseeffectsofcancervaccinesAlthoughtheseearlycancervaccineexperimentshavebeenpromising,challengesremain.Anindividualtumourcanharbourthousandsofsomaticmutationsandpredictingwhichneoantigenscanelicitstrongantitumourresponsesremainsanimperfectart.However,thecurrentmethods,consistingofvalidatingmRNAexpressionofthemutationintumourcellsandusingsoftware/databasestopredictpeptide–MHCbinding,havebeensurprisinglyeffectiveinclinicaltrialstodate229.However,thissuccesshasbeenbiasedtowardsMHCclassI-specificneoantigensaspredictionforMHCclass IImoleculespresentsuniquechallenges.Forexample,theincreaseddiversityofMHCclassIImoleculesandthestructuralnatureoftheiropenbindingpocketmakediscerningapredictablebindingmotifdifficult233.Takentogether,thesedifferencesbetweenMHCclasseshighlighttheparticularneedfornewMHCclassIIpredictionalgorithms.Otherchallengingfactorstoconsiderarethetimeandcostassociatedwithdevelopingbespokevaccines.Currently,developmentandproductionofthesevaccinestakesapproximately4months,and,althoughthedowntimecanbeusedtoinitiateothertypesoftreatment,shorteningthetimespantopersonalizedtreatmentiscritical.Forrapidlygrowingormetastatictumours,monthsmightmatter.Ongoingeffortstoimprovedesignandmanufacturingcouldshortentheproductiontimetoseveralweeks229.Overall,thecomprehensiveidentificationofsomaticmutations,andtheevaluationofpeptidesderivedfromthesemutationstoelicitimmuneresponses,hasrenewedinterestinvaccinationstrategiesforcancertreatment.Eventhoughearlyclinicaltrialsarepromising,extrapolationofthesefindingscouldbemisleadingandadvancedclinicaltrialswillultimatelydeterminetheefficacyofpersonalizedvaccinetherapy.Nonetheless,cancervaccinesareprototypical‘singlepatientandsingledisease’precisionmedicationsandwouldhavebeenintherealmofsciencefictionjustafewdecadesago.Furtherresearchandtechnologicaldevelopmentswillnodoubtleadtogreaterprecisionandeffectivenessandalsoprovideabetterunderstandingofthemechanismsofantitumouralimmuneresponses.EmergingcancerimmunotherapeuticsThemoleculardiversityofgeneticchangesthattransformcellsinhumancancerscreatesaplethoraofdiseasesinvolvingspecifictissuetypesandcancermechanisms.Giventheexcitingadvancesincancerimmunotherapy,variousmodificationstocurrentimmunotherapeuticapproachesarebeingdevelopedandtestedtoaddressthecomplexityofcancerimmunopathogenesisandcancertargetability.CombinationtherapiesFollowingtheclinicalsuccessofcheckpointblockademonotherapy,combinationtherapiesthatcoupleagentswithdistinctmechanismsofactionhaveaugmentedtreatmentsuccessinvariouscancers.Forexample,ipilimumabandnivolumabcombinationtherapyconferredasignificantsurvivalbenefitinpatientswithmetastaticmelanomaandadvancedrenalcellcarcinoma,leadingtoFDAapprovalsfortheseconditions234,235.Thesynergismofanti-CTLA4andanti-PD1therapiesisnotsurprisingbecauseCTLA4andPD1regulateantitumouralimmunityinacomplementarymanner8.CrosstalkbetweentheCTLA4andPD1pathways,mediatedbyCD80andPDL1dimerization,providesadditionalinsightintothemechanismbehindthesuccessofdualtherapy236,237.However,asexpected,combinationcheckpointtherapyalsoincreasestheriskofmedication-inducedtoxicities235.Combiningradiationtherapywithcheckpointblockadeisanothertreatmentoptionforrecalcitranttumours.Theimmunomodulatoryeffectofradiotherapyalonerepresentsadouble-edgedsword.Mechanistically,radiotherapyincreasesthediversityofantitumouralTcellresponsesbyexposingnovelneoantigensatthesametimeasbluntingtheimmuneresponsethroughtheinductionofPDL1expressionontumourcells238.Therefore,andonthebasisofpreclinicaldata,combiningradiotherapywithblockersofthePD1axisrepresentsanattractivesynergisticcombination239.Patientswithmetastaticdiseasemayrepresentatargetpopulationfordeployingthiscombinationasabscopalresponsestoradiotherapyareboostedbycheckpointblockadeformanytumourtypes238,240.Overall,dualcheckpointblockadeandradiation–checkpointpolytherapyrepresentpromisingavenuesforsynergistictherapeuticresponsesbecausethesedrugcombinationsdisplayuniqueandcomplementarypharmacodynamics.NewtargetsforcheckpointblockadeResearchisalsodirectedatnewlydiscoverednegativeregulatorsofTcellactivation,includinglymphocyteactivationgene3(LAG3),Tcellimmunoglobulin3(TIM3),V-domainimmunoglobulinsuppressorofTcellactivation(VISTA),B7-H3andTcellimmunoreceptorwithimmunoglobulinandimmunoreceptortyrosine-basedinhibitorymotifdomains(TIGIT),asadjuvantcancerdrugs241,242,243.LAG3isaninhibitoryligandthatreducesTcellactivationbyblockingCD4contactsitesonMHCclassIIproteinsandisexpressedonactivatedTcellsandTregcells.ItpreventstheoverexpansionoftheTcellcompartmentbyinducingcellcyclearrest244.LikePD1,LAG3isamarkerofTcellexhaustion,whichportendsapoorerprognosiswhenexpressedonTILs245.Multiplestrategiesofblockadehavebeendeveloped,includingaLAG3:IgfusionproteinandLAG3-targetedmAbs246.Inclinicaltrialsinpatientswithrenalcellcarcinomaandpancreaticadenocarcinoma,thesedrugsdidnotsucceedasmonotherapieseventhoughtheyincreasedthefrequencyoftumour-specificTcells246.However,whencombinedwithpaclitaxelformetastaticbreastcancer,50%ofpatientstreatedwithLAG3:Igrespondedtotreatment247.Recentresearchhasdemonstratedthatfibrinogen-likeprotein1(FGL1)activatesLAG3independentlyofbindingMHCclassIImoleculesandinterferencewiththisinteractionisessentialforunleashingpotentantitumouraleffects248.TIM3isanothernegativeregulatoroftheTcellresponse.RatherthaninhibitingcellcycleprogressionlikeLAG3,itregulatesapoptosisfollowinggalectin9 binding249.Itsupregulationcouldrepresentamechanismofresistancetoanti-PD1therapy,makingcombinationtherapyanattractiveoptiontoboosttheeffectivenessofanti-PD1therapy.Inaddition,TIM3expressioncorrelateswithpoorprognosisinnon-small-celllungcancerandfollicularlymphoma,suggestingaroleincancerprogression250.SimilartoTIM3,VISTAisanothermoleculeshowntobeassociatedwithresistancetocurrentcheckpointinhibitorsandhasdemonstratedsynergismwithanti-PD1therapyinmousemodels251,252.B7-H3representsanothertargetablenegativeregulatoroftheTcellresponse.Itishighlyexpressedinmanytumourtypes,includingnon-small-celllungcarcinoma,prostatecancer,pancreaticcancer,ovariancancerandcolorectalcancer241,243.Enoblituzumab,ahumanizedmAbtargetingB7-H3,waseffectiveatinducingantitumouralresponsesinaphaseIstudyofpatientswithvarioustumourtypes253.Dual-affinityretargeting(DART)proteinsthatbindtoB7-H3andCD3,aswellasradioactiveiodine-conjugatedB7-H3mAbs,representadditionalwaystomodulatethispathwayandareinearly-phaseclinicaltesting254,255.Lastly,TIGIT,whichcontainstwoimmunoreceptortyrosine-basedinhibitorymotifsinitsintracellulardomainanddampensTcellhyperactivation,isbeinginvestigatedasacheckpointtarget.ItismorerobustlyexpressedinTILsthaninperipheralcells,makingitanattractivetargetowingtoitsincreasedspecificitycomparedwithothercheckpointmolecules243.PreclinicalevidencedemonstratesthatTIGITblockadeaugmentstheeffectofpre-existingcheckpointinhibitorsandreinvigoratestumour-specificexhaustedTcells250,256.Currently,blockadeofimmunecheckpointsotherthanCTLA4orthePD1axishavenotyetshownmajorclinicalbenefitsassingleagentsbutrathermayincreasetheeffectivenessofpre-existingtreatments.Althoughtheblockingofimmunecheckpointmoleculesreleasespotentantitumouralresponses,thestimulationofTcellco-stimulatoryreceptors,includinginducibleco-stimulator(ICOS),tumournecrosisfactorreceptorsuperfamilymember4(TNFRSF4;alsoknownasCD134),tumournecrosisfactorreceptorsuperfamilymember9(TNFRSF9;alsoknownas4-1BB),glucocorticoid-inducedtumournecrosisfactorreceptor(GITR)andCD27,canalsoamplifytheeffectofexistingimmunotherapies,asshownpreclinicallyandinearly-stageclinicalstudies168,170,171,241,242,243,257.ICOSisamemberoftheCD28familyofco-stimulatorymoleculesthatmediatescontext-dependentcytokineresponseswithanemphasisonThelper2(TH2)cellskewing258.ICOSstimulationbyvaccinesmodifiedtoexpressICOSligandexhibitedsynergismwithtreatmentwithCTLA4-blockingantibodiespreclinically259.ICOSupregulationfollowingtreatmentwithcurrentlyapprovedanti-CTLA4andanti-PD1therapiesmayrepresentabiomarkerofactiveantitumouralresponsesbecauseitassociateswithfavourableoutcomes260.TNFRSF4isanotherco-stimulatorymoleculeforwhichpreclinicalevidenceindicatesaroleindeployingrobustantitumouralresponsesinsarcoma,melanomaandbreastcancer261,262.DatasuggestthattargetingTNFRSF4amplifiesanti-PD1therapybecauseTNFRSF4agonismcanupregulatePDL1expression263.Inadditiontosynergismwithcheckpointblockade,TNFRSF4upregulationwithinCARTcellsbytransfectionrepresentsawaytoaugmenttumourcytotoxicity170.AgonismofadditionalTNFRfamilymembers,suchasTNFRSF9,GITRandCD27,isbeingtestedasadjuvanttherapyinphaseI/IItrialsforvarioustumourtypes,withpromisingresults243.Therefore,agonismofpositiveTcellco-stimulatorysignals,inconcertwiththeexistingcheckpointinhibitorsorCARTcells,representsanoveltherapeuticavenuetoboostantitumouralimmunity.ConcludingremarksCancerimmunotherapyfocusedonTcellshasemergedasapowerfultoolinthearmamentariumagainstcancer.Nevertheless,ittookmanyyearsofbasicsciencediscoveriesandsubsequentclinicaltranslationtounequivocallydemonstratethepowerofmodulatingtheimmunesystemtotreatcancer.FurtherresearchthatinvestigatestheregulationofTcellsandotherimmunecells,forexampleAPCsandnaturalkillercells,mayallowustoenhancethepowerofthisapproach.In‘difficulttotreat’tumours,theeffectsizesobservedinclinicaltrialsofcheckpointblockadeagents,ATCtransfertherapiesandcancervaccineshavebeenfarhigherthanthemosteffectivechemotherapeuticagents.Althoughimmune-relatedadverseeffectsarecommon,theseinnovativeimmune-targetingtherapiesarebettertoleratedthantraditionalchemotherapeuticagents.Theburgeoningfieldofcancerimmunotherapycontinuestogrowasindicationsforcurrentlyapprovedtherapiesexpandandthesearchfornoveldruggabletargetscontinues.Thecancerimmunotherapysuccessstorieswehaverecountedhighlighttheintrinsicconnectionbetweenbasicscienceresearchandclinicalpractice.Theyalsoillustratehowabench-to-bedsideapproach,builtuponasolidbasicsciencefoundation,canbesuccessfulinfightingoneofhumanity’smostdreadeddiseases. ReferencesOiseth,S.J.&Aziz,M.S.A.-E.Cancerimmunotherapy:abriefreviewofthehistory,possibilities,andchallengesahead.J.CancerMetastasisTreat.3,250–261(2017).CAS  GoogleScholar  Decker,W.K.&Safdar,A.Bioimmunoadjuvantsforthetreatmentofneoplasticandinfectiousdisease:Coley’slegacyrevisited.CytokineGrowthFactor.Rev.20,271–281(2009).PubMed  GoogleScholar  Decker,W.K.etal.Cancerimmunotherapy:historicalperspectiveofaclinicalrevolutionandemergingpreclinicalanimalmodels.Front.Immunol.8,829(2017).PubMed  PubMedCentral  GoogleScholar  Gross,L.IntradermalimmunizationofC3Hmiceagainstasarcomathatoriginatedinananimalofthesameline.CancerRes.3,326(1943). GoogleScholar  Smith,J.L.Jr.&Stehlin,J.S.Jr.Spontaneousregressionofprimarymalignantmelanomaswithregionalmetastases.Cancer18,1399–1415(1965).PubMed  GoogleScholar  Chow,M.T.,Moller,A.&Smyth,M.J.Inflammationandimmunesurveillanceincancer.Semin.CancerBiol.22,23–32(2012).CAS  PubMed  GoogleScholar  Halliday,G.M.,Patel,A.,Hunt,M.J.,Tefany,F.J.&Barnetson,R.S.C.Spontaneousregressionofhumanmelanoma/nonmelanomaskincancer:associationwithinfiltratingCD4+Tcells.WorldJ.Surg.19,352–358(1995).CAS  PubMed  GoogleScholar  Fife,B.T.&Bluestone,J.A.ControlofperipheralT-celltoleranceandautoimmunityviatheCTLA-4andPD-1pathways.Immunol.Rev.224,166–182(2008).CAS  PubMed  GoogleScholar  Brunet,J.F.etal.Anewmemberoftheimmunoglobulinsuperfamily—CTLA-4.Nature328,267–270(1987).ThisstudyscreensmouseTcellcDNAlibrariesandidentifiesCTLA4asanewimmunoglobulinsuperfamilymemberexpressedwithinthelymphoidlineagepredominantlyinactivatedcells.CAS  PubMed  GoogleScholar  Dariavach,P.,Mattei,M.G.,Golstein,P.&Lefranc,M.P.HumanIgsuperfamilyCTLA-4gene:chromosomallocalizationandidentityofproteinsequencebetweenmurineandhumanCTLA-4cytoplasmicdomains.Eur.J.Immunol.18,1901–1905(1988).CAS  PubMed  GoogleScholar  Harper,K.etal.CTLA-4andCD28activatedlymphocytemoleculesarecloselyrelatedinbothmouseandhumanastosequence,messageexpression,genestructure,andchromosomallocation.J.Immunol.147,1037–1044(1991).CAS  PubMed  GoogleScholar  Walunas,T.L.etal.CTLA-4canfunctionasanegativeregulatorofTcellactivation.Immunity1,405–413(1994).CAS  PubMed  GoogleScholar  Lo,B.etal.AUTOIMMUNEDISEASE.PatientswithLRBAdeficiencyshowCTLA4lossandimmunedysregulationresponsivetoabatacepttherapy.Science349,436–440(2015).CAS  PubMed  GoogleScholar  Linsley,P.S.etal.CTLA-4isasecondreceptorfortheBcellactivationantigenB7.J.Exp.Med.174,561–569(1991).CAS  PubMed  GoogleScholar  Linsley,P.S.etal.HumanB7-1(CD80)andB7-2(CD86)bindwithsimilaraviditiesbutdistinctkineticstoCD28andCTLA-4receptors.Immunity1,793–801(1994).ThisstudydemonstratesthatCD80andCD86bindtoCTLA4withgreateraviditythanCD28.CAS  PubMed  GoogleScholar  Pentcheva-Hoang,T.,Egen,J.G.,Wojnoonski,K.&Allison,J.P.B7-1andB7-2selectivelyrecruitCTLA-4andCD28totheimmunologicalsynapse.Immunity21,401–413(2004).CAS  PubMed  GoogleScholar  Krummel,M.F.&Allison,J.P.CD28andCTLA-4haveopposingeffectsontheresponseofTcellstostimulation.J.Exp.Med.182,459–465(1995).CAS  PubMed  GoogleScholar  Krummel,M.F.&Allison,J.P.CTLA-4engagementinhibitsIL-2accumulationandcellcycleprogressionuponactivationofrestingTcells.J.Exp.Med.183,2533–2540(1996).CAS  PubMed  GoogleScholar  Waterhouse,P.etal.LymphoproliferativedisorderswithearlylethalityinmicedeficientinCtla-4.Science270,985–988(1995).CAS  PubMed  GoogleScholar  Tivol,E.A.etal.CTLA4IgpreventslymphoproliferationandfatalmultiorgantissuedestructioninCTLA-4-deficientmice.J.Immunol.158,5091–5094(1997).AlongwithWaterhouseetal.(1995),thisinvivomurinestudydemonstratesthatCD4+TcellsarenecessarytocauseseveremultiorganautoimmunityinthecontextofCTLA4deficiency,whichcouldbereversedbyCTLA4Ig.CAS  PubMed  GoogleScholar  Mandelbrot,D.A.,McAdam,A.J.&Sharpe,A.H.B7-1orB7-2isrequiredtoproducethelymphoproliferativephenotypeinmicelackingcytotoxicTlymphocyte-associatedantigen4(CTLA-4).J.Exp.Med.189,435–440(1999).CAS  PubMed  PubMedCentral  GoogleScholar  Tai,X.,VanLaethem,F.,Sharpe,A.H.&Singer,A.InductionofautoimmunediseaseinCTLA-4–/–micedependsonaspecificCD28motifthatisrequiredforinvivocostimulation.Proc.NatlAcad.Sci.USA104,13756–13761(2007).CAS  PubMed  PubMedCentral  GoogleScholar  Lee,S.etal.AbataceptalleviatessevereautoimmunesymptomsinapatientcarryingadenovovariantinCTLA-4.J.AllergyClin.Immunol.137,327–330(2016).PubMed  GoogleScholar  Kuehn,H.S.etal.ImmunedysregulationinhumansubjectswithheterozygousgermlinemutationsinCTLA4.Science345,1623–1627(2014).CAS  PubMed  PubMedCentral  GoogleScholar  Intlekofer,A.M.&Thompson,C.B.Atthebench:preclinicalrationaleforCTLA-4andPD-1blockadeascancerimmunotherapy.J.Leukoc.Biol.94,25–39(2013).CAS  PubMed  PubMedCentral  GoogleScholar  Darlington,P.J.etal.SurfacecytotoxicTlymphocyte–associatedantigen4partitionswithinlipidraftsandrelocatestotheimmunologicalsynapseunderconditionsofinhibitionofTcellactivation.J.Exp.Med.195,1337(2002).ThisstudyprovideskeyinsightsintothecompartmentalizationofCTLA4throughouttheTcellactivationcycle.CAS  PubMed  PubMedCentral  GoogleScholar  Schneider,H.etal.ReversaloftheTCRstopsignalbyCTLA-4.Science313,1972–1975(2006).CAS  PubMed  GoogleScholar  Qureshi,O.S.etal.Trans-endocytosisofCD80andCD86:amolecularbasisforthecell-extrinsicfunctionofCTLA-4.Science332,600–603(2011).Thisstudynominatestrans-endocytosisofCD80andCD86asacell-extrinsicmechanismofCTLA4-mediatedinhibitionofTcellactivation.CAS  PubMed  PubMedCentral  GoogleScholar  Greenwald,R.J.,Boussiotis,V.A.,Lorsbach,R.B.,Abbas,A.K.&Sharpe,A.H.CTLA-4regulatesinductionofanergyinvivo.Immunity14,145–155(2001).UsingTCRtransgenicmice,thisstudyprovidesimportantinvivoevidencethatCTLA4isessentialforTcelltolerancebyregulatingentranceintotheanergicstate.CAS  PubMed  GoogleScholar  Chuang,E.etal.RegulationofcytotoxicTlymphocyte-associatedmolecule-4bySrckinases.J.Immunol.162,1270–1277(1999).CAS  PubMed  GoogleScholar  Marengere,L.E.etal.RegulationofTcellreceptorsignalingbytyrosinephosphataseSYPassociationwithCTLA-4.Science272,1170–1173(1996).CAS  PubMed  GoogleScholar  Chuang,E.etal.TheCD28andCTLA-4receptorsassociatewiththeserine/threoninephosphatasePP2A.Immunity13,313–322(2000).CAS  PubMed  GoogleScholar  Fraser,J.H.,Rincon,M.,McCoy,K.D.&LeGros,G.CTLA4ligationattenuatesAP-1,NFATandNF-κBactivityinactivatedTcells.Eur.J.Immunol.29,838–844(1999).CAS  PubMed  GoogleScholar  Jain,N.,Nguyen,H.,Chambers,C.&Kang,J.DualfunctionofCTLA-4inregulatoryTcellsandconventionalTcellstopreventmultiorganautoimmunity.Proc.NatlAcad.Sci.USA107,1524–1528(2010).CAS  PubMed  PubMedCentral  GoogleScholar  Wing,K.etal.CTLA-4controloverFoxp3+regulatoryTcellfunction.Science322,271–275(2008).CAS  PubMed  GoogleScholar  Takahashi,T.etal.Immunologicself-tolerancemaintainedbyCD25+CD4+regulatoryTcellsconstitutivelyexpressingcytotoxicTlymphocyte-associatedantigen4.J.Exp.Med.192,303–310(2000).CAS  PubMed  PubMedCentral  GoogleScholar  Tai,X.etal.BasisofCTLA-4functioninregulatoryandconventionalCD4+Tcells.Blood119,5155–5163(2012).ThisstudydemonstratesthatCTLA4expressionwithinregulatoryTcellsisessentialforthecharacteristicsuppressivefunctionsofthesecellsontheimmuneresponse.CAS  PubMed  PubMedCentral  GoogleScholar  Walker,L.S.K.TregandCTLA-4:twointertwiningpathwaystoimmunetolerance.J.Autoimmunity45,49–57(2013).CAS  GoogleScholar  Chikuma,S.&Bluestone,J.A.ExpressionofCTLA-4andFOXP3incisprotectsfromlethallymphoproliferativedisease.Eur.J.Immunol.37,1285–1289(2007).CAS  PubMed  GoogleScholar  Read,S.etal.BlockadeofCTLA-4onCD4+CD25+regulatoryTcellsabrogatestheirfunctioninvivo.J.Immunol.177,4376–4383(2006).CAS  PubMed  GoogleScholar  Read,S.,Malmström,V.&Powrie,F.CytotoxicTlymphocyte-associatedantigen4playsanessentialroleinthefunctionofCD25+CD4+regulatorycellsthatcontrolintestinalinflammation.J.Exp.Med.192,295–302(2000).CAS  PubMed  PubMedCentral  GoogleScholar  Friedline,R.H.etal.CD4+regulatoryTcellsrequireCTLA-4forthemaintenanceofsystemictolerance.J.Exp.Med.206,421–434(2009).CAS  PubMed  PubMedCentral  GoogleScholar  Sojka,D.K.,Hughson,A.&Fowell,D.J.CTLA-4isrequiredbyCD4+CD25+TregtocontrolCD4+T-celllymphopenia-inducedproliferation.Eur.J.Immunol.39,1544–1551(2009).CAS  PubMed  PubMedCentral  GoogleScholar  Hou,T.Z.etal.AtransendocytosismodelofCTLA-4functionpredictsitssuppressivebehavioronregulatoryTcells.J.Immunol.194,2148–2159(2015).CAS  PubMed  GoogleScholar  Grosso,J.F.&Jure-Kunkel,M.N.CTLA-4blockadeintumormodels:anoverviewofpreclinicalandtranslationalresearch.CancerImmun.13,5(2013).PubMed  PubMedCentral  GoogleScholar  Leach,D.R.,Krummel,M.F.&Allison,J.P.EnhancementofantitumorimmunitybyCTLA-4blockade.Science271,1734–1736(1996).ThisstudyelegantlyshowsthatCTLA4blockadeinvivocanenhanceimmune-mediatedantitumouralresponsesinmultipletumourmodelsthatultimatelypersistuponrechallenge.CAS  PubMed  GoogleScholar  Kwon,E.D.etal.ManipulationofTcellcostimulatoryandinhibitorysignalsforimmunotherapyofprostatecancer.Proc.NatlAcad.Sci.USA94,8099–8103(1997).CAS  PubMed  PubMedCentral  GoogleScholar  Fecci,P.E.etal.SystemicCTLA-4blockadeamelioratesglioma-inducedchangestotheCD4+TcellcompartmentwithoutaffectingregulatoryT-cellfunction.Clin.CancerRes.13,2158–2167(2007).CAS  PubMed  GoogleScholar  Yang,Y.F.etal.EnhancedinductionofantitumorT-cellresponsesbycytotoxicTlymphocyte-associatedmolecule-4blockade:theeffectismanifestedonlyattherestrictedtumor-bearingstages.CancerRes.57,4036–4041(1997).CAS  PubMed  GoogleScholar  Mangsbo,S.M.etal.EnhancedtumoreradicationbycombiningCTLA-4orPD-1blockadewithCpGtherapy.J.Immunother.33,225–235(2010).CAS  PubMed  GoogleScholar  Hurwitz,A.A.,Yu,T.F.Y.,Leach,D.R.&Allison,J.P.CTLA-4blockadesynergizeswithtumor-derivedgranulocyte–macrophagecolony-stimulatingfactorfortreatmentofanexperimentalmammarycarcinoma.Proc.NatlAcad.Sci.95,10067(1998).CAS  PubMed  PubMedCentral  GoogleScholar  vanElsas,A.,Hurwitz,A.A.&Allison,J.P.CombinationimmunotherapyofB16melanomausinganti-cytotoxicTlymphocyte-associatedantigen4(CTLA-4)andgranulocyte/macrophagecolony-stimulatingfactor(GM-CSF)-producingvaccinesinducesrejectionofsubcutaneousandmetastatictumorsaccompaniedbyautoimmunedepigmentation.J.Exp.Med.190,355–366(1999).PubMed  PubMedCentral  GoogleScholar  Jure-Kunkel,M.N.,Masters,G.,Girit,E.,Dito,G.&Lee,F.Y.Antitumoractivityofanti-CTLA-4monoclonalantibody(mAb)incombinationwithixabepiloneinpreclinicaltumormodels.J.Clin.Oncol.26,3048–3048(2008). GoogleScholar  Hodi,F.S.etal.BiologicactivityofcytotoxicTlymphocyte-associatedantigen4antibodyblockadeinpreviouslyvaccinatedmetastaticmelanomaandovariancarcinomapatients.Proc.NatlAcad.Sci.USA100,4712–4717(2003).CAS  PubMed  PubMedCentral  GoogleScholar  Hodi,F.S.etal.Improvedsurvivalwithipilimumabinpatientswithmetastaticmelanoma.N.Engl.J.Med.363,711–723(2010).CAS  PubMed  PubMedCentral  GoogleScholar  Schadendorf,D.etal.Pooledanalysisoflong-termsurvivaldatafromphaseIIandphaseIIItrialsofipilimumabinunresectableormetastaticmelanoma.J.Clin.Oncol.33,1889–1894(2015).Thisseminalmeta-analysisprovidesstrongclinicalevidencethatipilimumabconfersadurablesurvivalbenefittopatientswithadvancedmelanoma.CAS  PubMed  PubMedCentral  GoogleScholar  Maio,M.etal.Five-yearsurvivalratesfortreatment-naivepatientswithadvancedmelanomawhoreceivedipilimumabplusdacarbazineinaphaseIIItrial.J.Clin.Oncol.33,1191–1196(2015).CAS  PubMed  PubMedCentral  GoogleScholar  Yang,J.C.etal.Ipilimumab(anti-CTLA4antibody)causesregressionofmetastaticrenalcellcancerassociatedwithenteritisandhypophysitis.J.Immunother.30,825–830(2007).CAS  PubMed  PubMedCentral  GoogleScholar  Lynch,T.J.etal.Ipilimumabincombinationwithpaclitaxelandcarboplatinasfirst-linetreatmentinstageIIIB/IVnon-small-celllungcancer:resultsfromarandomized,double-blind,multicenterphaseIIstudy.J.Clin.Oncol.30,2046–2054(2012).CAS  PubMed  GoogleScholar  Reck,M.etal.Ipilimumabincombinationwithpaclitaxelandcarboplatinasfirst-linetherapyinextensive-disease-small-celllungcancer:resultsfromarandomized,double-blind,multicenterphase2trial.Ann.Oncol.24,75–83(2013).CAS  PubMed  GoogleScholar  Kwon,E.D.etal.Ipilimumabversusplaceboafterradiotherapyinpatientswithmetastaticcastration-resistantprostatecancerthathadprogressedafterdocetaxelchemotherapy(CA184-043):amulticentre,randomised,double-blind,phase3trial.LancetOncol.15,700–712(2014).CAS  PubMed  PubMedCentral  GoogleScholar  Ribas,A.etal.PhaseIIIrandomizedclinicaltrialcomparingtremelimumabwithstandard-of-carechemotherapyinpatientswithadvancedmelanoma.J.Clin.Oncol.31,616–622(2013).CAS  PubMed  PubMedCentral  GoogleScholar  Furness,A.J.,Vargas,F.A.,Peggs,K.S.&Quezada,S.A.ImpactoftumourmicroenvironmentandFcreceptorsontheactivityofimmunomodulatoryantibodies.TrendsImmunol.35,290–298(2014).CAS  PubMed  GoogleScholar  He,M.etal.RemarkablysimilarCTLA-4bindingpropertiesoftherapeuticipilimumabandtremelimumabantibodies.Oncotarget8,67129–67139(2017).PubMed  PubMedCentral  GoogleScholar  Baksh,K.&Weber,J.Immunecheckpointproteininhibitionforcancer:preclinicaljustificationforCTLA-4andPD-1blockadeandnewcombinations.Semin.Oncol.42,363–377(2015).CAS  PubMed  GoogleScholar  Snyder,A.etal.GeneticbasisforclinicalresponsetoCTLA-4blockadeinmelanoma.N.Engl.J.Med.371,2189–2199(2014).PubMed  PubMedCentral  GoogleScholar  vanRooij,N.etal.Tumorexomeanalysisrevealsneoantigen-specificT-cellreactivityinanipilimumab-responsivemelanoma.J.Clin.Oncol.31,e439–e442(2013).PubMed  GoogleScholar  Sharma,N.,Vacher,J.&Allison,J.P.TLR1/2ligandenhancesantitumorefficacyofCTLA-4blockadebyincreasingintratumoralTregdepletion.Proc.NatlAcad.Sci.USA116,10453(2019).CAS  PubMed  PubMedCentral  GoogleScholar  Peggs,K.S.,Quezada,S.A.,Chambers,C.A.,Korman,A.J.&Allison,J.P.BlockadeofCTLA-4onbotheffectorandregulatoryTcellcompartmentscontributestotheantitumoractivityofanti-CTLA-4antibodies.J.Exp.Med.206,1717–1725(2009).CAS  PubMed  PubMedCentral  GoogleScholar  Ha,D.etal.DifferentialcontrolofhumanTregandeffectorTcellsintumorimmunitybyFc-engineeredanti-CTLA-4antibody.Proc.NatlAcad.Sci.USA116,609(2019).CAS  PubMed  GoogleScholar  Sharma,A.etal.Anti-CTLA-4immunotherapydoesnotdepleteFOXP3+regulatoryTcells(Tregs)inhumancancers.Clin.CancerRes.25,1233(2019).CAS  PubMed  GoogleScholar  Ishida,Y.,Agata,Y.,Shibahara,K.&Honjo,T.InducedexpressionofPD-1,anovelmemberoftheimmunoglobulingenesuperfamily,uponprogrammedcelldeath.EMBOJ.11,3887–3895(1992).Usingsubtractivehybridization,thisstudyisthefirsttoidentifyPD1asanewimmunoglobulinsuperfamilymemberexpressedwithinthethymus.CAS  PubMed  PubMedCentral  GoogleScholar  Carreno,B.M.&Collins,M.TheB7familyofligandsanditsreceptors:newpathwaysforcostimulationandinhibitionofimmuneresponses.Annu.Rev.Immunol.20,29–53(2002).CAS  PubMed  GoogleScholar  Latchman,Y.etal.PD-L2isasecondligandforPD-1andinhibitsTcellactivation.Nat.Immunol.2,261–268(2001).CAS  PubMed  GoogleScholar  Francisco,L.M.,Sage,P.T.&Sharpe,A.H.ThePD-1pathwayintoleranceandautoimmunity.Immunol.Rev.236,219–242(2010).CAS  PubMed  PubMedCentral  GoogleScholar  Freeman,G.J.etal.EngagementofthePD-1immunoinhibitoryreceptorbyanovelB7familymemberleadstonegativeregulationoflymphocyteactivation.J.Exp.Med.192,1027–1034(2000).ThisstudydemonstratesthatanewB7familymember,PDL1,functionsasaligandforPD1inordertodampenTcellactivation.CAS  PubMed  PubMedCentral  GoogleScholar  Nishimura,H.,Minato,N.,Nakano,T.&Honjo,T.ImmunologicalstudiesonPD-1deficientmice:implicationofPD-1asanegativeregulatorforBcellresponses.Int.Immunol.10,1563–1572(1998).CAS  PubMed  GoogleScholar  Nishimura,H.,Nose,M.,Hiai,H.,Minato,N.&Honjo,T.Developmentoflupus-likeautoimmunediseasesbydisruptionofthePD-1geneencodinganITIMmotif-carryingimmunoreceptor.Immunity11,141–151(1999).CAS  PubMed  GoogleScholar  Nishimura,H.etal.AutoimmunedilatedcardiomyopathyinPD-1receptor-deficientmice.Science291,319–322(2001).CAS  PubMed  GoogleScholar  Wang,J.etal.EstablishmentofNOD-Pdcd1–/–miceasanefficientanimalmodeloftypeIdiabetes.Proc.NatlAcad.Sci.USA102,11823–11828(2005).CAS  PubMed  PubMedCentral  GoogleScholar  Keir,M.E.,Butte,M.J.,Freeman,G.J.&Sharpe,A.H.PD-1anditsligandsintoleranceandimmunity.Annu.Rev.Immunol.26,677–704(2008).CAS  PubMed  GoogleScholar  Hui,E.etal.TcellcostimulatoryreceptorCD28isaprimarytargetforPD-1-mediatedinhibition.Science355,1428–1433(2017).ThisstudyhighlightsthecentralroleofCD28dephosphorylationinmediatingthenegativeregulatoryeffectofPD1-mediatedTcellinhibition.CAS  PubMed  PubMedCentral  GoogleScholar  Parry,R.V.etal.CTLA-4andPD-1receptorsinhibitT-cellactivationbydistinctmechanisms.Mol.CellBiol.25,9543–9553(2005).ThisstudydemonstratesthecomplementarywaysinwhichCTLA4andPD1inhibitproteinkinaseBsignallingtoreduceglucoseuptakeandutilization.CAS  PubMed  PubMedCentral  GoogleScholar  Wei,S.C.etal.Distinctcellularmechanismsunderlieanti-CTLA-4andanti-PD-1checkpointblockade.Cell170,1120–1133.e17(2017).CAS  PubMed  PubMedCentral  GoogleScholar  Barber,D.L.etal.RestoringfunctioninexhaustedCD8Tcellsduringchronicviralinfection.Nature439,682–687(2006).CAS  PubMed  GoogleScholar  Blank,C.etal.PD-L1/B7H-1inhibitstheeffectorphaseoftumorrejectionbyTcellreceptor(TCR)transgenicCD8+Tcells.CancerRes.64,1140–1145(2004).CAS  PubMed  GoogleScholar  Francisco,L.M.etal.PD-L1regulatesthedevelopment,maintenance,andfunctionofinducedregulatoryTcells.J.Exp.Med.206,3015–3029(2009).CAS  PubMed  PubMedCentral  GoogleScholar  Wherry,E.J.&Kurachi,M.MolecularandcellularinsightsintoTcellexhaustion.Nat.Rev.Immunol.15,486–499(2015).CAS  PubMed  PubMedCentral  GoogleScholar  Hirano,F.etal.BlockadeofB7-H1andPD-1bymonoclonalantibodiespotentiatescancertherapeuticimmunity.CancerRes.65,1089–1096(2005).ThispreclinicalmurinestudyshowsthatblockadeofPD1orPDL1couldreverseinherentresistanceoftumourstocytolysisbyTcells.CAS  PubMed  GoogleScholar  Iwai,Y.etal.InvolvementofPD-L1ontumorcellsintheescapefromhostimmunesystemandtumorimmunotherapybyPD-L1blockade.Proc.NatlAcad.Sci.USA99,12293–12297(2002).ThisstudyshowsthatPDL1expressionbytumourcellsrepresentsamechanismofresistancetoimmune-mediatedcytolysisthatcanbeabrogatedbyblockadeofthePD1axis.CAS  PubMed  PubMedCentral  GoogleScholar  Strome,S.E.etal.B7-H1blockadeaugmentsadoptiveT-cellimmunotherapyforsquamouscellcarcinoma.CancerRes.63,6501–6505(2003).CAS  PubMed  GoogleScholar  He,Y.F.etal.Blockingprogrammeddeath-1ligand–PD-1interactionsbylocalgenetherapyresultsinenhancementofantitumoreffectofsecondarylymphoidtissuechemokine.J.Immunol.173,4919–4928(2004).CAS  PubMed  GoogleScholar  Kamphorst,A.O.etal.RescueofexhaustedCD8TcellsbyPD-1-targetedtherapiesisCD28-dependent.Science355,1423–1427(2017).CAS  PubMed  PubMedCentral  GoogleScholar  Iwai,Y.,Terawaki,S.&Honjo,T.PD-1blockadeinhibitshematogenousspreadofpoorlyimmunogenictumorcellsbyenhancedrecruitmentofeffectorTcells.Int.Immunol.17,133–144(2005).Beyondenhancingantitumouralimmunity,thisstudydemonstratesthatPD1blockadecanlimittumourmetastaticpotential.CAS  PubMed  GoogleScholar  Hamanishi,J.etal.Programmedcelldeath1ligand1andtumor-infiltratingCD8+Tlymphocytesareprognosticfactorsofhumanovariancancer.Proc.NatlAcad.Sci.USA104,3360–3365(2007).CAS  PubMed  PubMedCentral  GoogleScholar  Thompson,R.H.etal.PD-1isexpressedbytumor-infiltratingimmunecellsandisassociatedwithpooroutcomeforpatientswithrenalcellcarcinoma.Clin.CancerRes.13,1757–1761(2007).CAS  PubMed  GoogleScholar  Thompson,R.H.etal.TumorB7-H1isassociatedwithpoorprognosisinrenalcellcarcinomapatientswithlong-termfollow-up.CancerRes.66,3381–3385(2006).AlongwithThompsonetal.(2007)andHamanishietal.(2007),thisstudyshowsthatexpressionofPD1ontumour-infiltratingTcellsandPD1ligandsontumoursarepoorprognosticmarkersinvariouscancers.CAS  PubMed  GoogleScholar  Hargadon,K.M.,Johnson,C.E.&Williams,C.J.Immunecheckpointblockadetherapyforcancer:anoverviewofFDA-approvedimmunecheckpointinhibitors.Int.Immunopharmacol.62,29–39(2018).CAS  PubMed  GoogleScholar  Berman,D.etal.Thedevelopmentofimmunomodulatorymonoclonalantibodiesasanewtherapeuticmodalityforcancer:theBristol-MyersSquibbexperience.Pharmacol.Ther.148,132–153(2015).CAS  PubMed  GoogleScholar  Brahmer,J.R.etal.PhaseIstudyofsingle-agentanti-programmeddeath-1(MDX-1106)inrefractorysolidtumors:safety,clinicalactivity,pharmacodynamics,andimmunologiccorrelates.J.Clin.Oncol.28,3167–3175(2010).CAS  PubMed  PubMedCentral  GoogleScholar  Gong,J.,Chehrazi-Raffle,A.,Reddi,S.&Salgia,R.DevelopmentofPD-1andPD-L1inhibitorsasaformofcancerimmunotherapy:acomprehensivereviewofregistrationtrialsandfutureconsiderations.J.Immunother.Cancer6,8(2018).PubMed  PubMedCentral  GoogleScholar  Weber,J.S.etal.Nivolumabversuschemotherapyinpatientswithadvancedmelanomawhoprogressedafteranti-CTLA-4treatment(CheckMate037):arandomised,controlled,open-label,phase3trial.LancetOncol.16,375–384(2015).CAS  PubMed  GoogleScholar  Weber,J.etal.AdjuvantnivolumabversusipilimumabinresectedstageIIIorIVmelanoma.N.Engl.J.Med.377,1824–1835(2017).CAS  PubMed  GoogleScholar  Robert,C.etal.NivolumabinpreviouslyuntreatedmelanomawithoutBRAFmutation.N.Engl.J.Med.372,320–330(2015).CAS  PubMed  GoogleScholar  Robert,C.etal.Pembrolizumabversusipilimumabinadvancedmelanoma.N.Engl.J.Med.372,2521–2532(2015).ThisphaseIIIclinicalstudyinadvancedmelanomapatientsshowsthatPD1blockadewasmoreefficaciousandresultedinlesstoxicitythananti-CTLA4therapy.CAS  PubMed  GoogleScholar  Schachter,J.etal.Pembrolizumabversusipilimumabforadvancedmelanoma:finaloverallsurvivalresultsofamulticentre,randomised,open-labelphase3study(KEYNOTE-006).Lancet390,1853–1862(2017).CAS  PubMed  GoogleScholar  Herbst,R.S.etal.Pembrolizumabversusdocetaxelforpreviouslytreated,PD-L1-positive,advancednon-small-celllungcancer(KEYNOTE-010):arandomisedcontrolledtrial.Lancet387,1540–1550(2016).CAS  PubMed  GoogleScholar  Reck,M.etal.PembrolizumabversuschemotherapyforPD-L1-positivenon-small-celllungcancer.N.Engl.J.Med.375,1823–1833(2016).CAS  PubMed  GoogleScholar  Garon,E.B.etal.Pembrolizumabforthetreatmentofnon-small-celllungcancer.N.Engl.J.Med.372,2018–2028(2015).PubMed  GoogleScholar  Cohen,E.E.W.etal.Pembrolizumabversusmethotrexate,docetaxel,orcetuximabforrecurrentormetastatichead-and-necksquamouscellcarcinoma(KEYNOTE-040):arandomised,open-label,phase3study.Lancet393,156–167(2019).CAS  PubMed  GoogleScholar  Moskowitz,C.H.etal.Pembrolizumabinrelapsed/refractoryclassicalHodgkinlymphoma:primaryendpointanalysisofthephase2KEYNOTE-087study.Blood128,1107(2016). GoogleScholar  Bellmunt,J.etal.Pembrolizumabassecond-linetherapyforadvancedurothelialcarcinoma.N.Engl.J.Med.376,1015–1026(2017).CAS  PubMed  PubMedCentral  GoogleScholar  Fuchs,C.S.etal.Safetyandefficacyofpembrolizumabmonotherapyinpatientswithpreviouslytreatedadvancedgastricandgastroesophagealjunctioncancer:phase2clinicalKEYNOTE-059trial.JAMAOncol.4,e180013(2018).PubMed  PubMedCentral  GoogleScholar  Boyiadzis,M.M.etal.SignificanceandimplicationsofFDAapprovalofpembrolizumabforbiomarker-defineddisease.J.Immunother.Cancer6,35(2018).PubMed  PubMedCentral  GoogleScholar  Ding,L.&Chen,F.PredictingtumorresponsetoPD-1blockade.N.Engl.J.Med.381,477–479(2019).PubMed  GoogleScholar  Prasad,V.,Kaestner,V.&Mailankody,S.Cancerdrugsapprovedbasedonbiomarkersandnottumortype—FDAapprovalofpembrolizumabformismatchrepair-deficientsolidcancers.JAMAOncol.4,157–158(2018).PubMed  GoogleScholar  Motzer,R.J.etal.Nivolumabversuseverolimusinadvancedrenal-cellcarcinoma.N.Engl.J.Med.373,1803–1813(2015).CAS  PubMed  PubMedCentral  GoogleScholar  Ferris,R.L.etal.Nivolumabforrecurrentsquamous-cellcarcinomaoftheheadandneck.N.Engl.J.Med.375,1856–1867(2016).PubMed  PubMedCentral  GoogleScholar  Sharma,P.etal.Nivolumabinmetastaticurothelialcarcinomaafterplatinumtherapy(CheckMate275):amulticentre,single-arm,phase2trial.LancetOncol.18,312–322(2017).CAS  PubMed  GoogleScholar  El-Khoueiry,A.B.etal.Nivolumabinpatientswithadvancedhepatocellularcarcinoma(CheckMate040):anopen-label,non-comparative,phase1/2doseescalationandexpansiontrial.Lancet389,2492–2502(2017).CAS  PubMed  PubMedCentral  GoogleScholar  Ansell,S.M.etal.PD-1blockadewithnivolumabinrelapsedorrefractoryHodgkin’slymphoma.N.Engl.J.Med.372,311–319(2015).PubMed  GoogleScholar  Overman,M.J.etal.NivolumabinpatientswithmetastaticDNAmismatchrepair-deficientormicrosatelliteinstability-highcolorectalcancer(CheckMate142):anopen-label,multicentre,phase2study.LancetOncol.18,1182–1191(2017).CAS  PubMed  PubMedCentral  GoogleScholar  Topalian,S.L.etal.Five-yearsurvivalandcorrelatesamongpatientswithadvancedmelanoma,renalcellcarcinoma,ornon-smallcelllungcancertreatedwithnivolumab.JAMAOncol.5,1411–1420(2019).PubMedCentral  PubMed  GoogleScholar  Dong,H.etal.Tumor-associatedB7-H1promotesT-cellapoptosis:apotentialmechanismofimmuneevasion.Nat.Med.8,793–800(2002).CAS  PubMed  GoogleScholar  Rosenberg,J.E.etal.Atezolizumabinpatientswithlocallyadvancedandmetastaticurothelialcarcinomawhohaveprogressedfollowingtreatmentwithplatinum-basedchemotherapy:asingle-arm,multicentre,phase2trial.Lancet387,1909–1920(2016).CAS  PubMed  PubMedCentral  GoogleScholar  Powles,T.etal.Atezolizumabversuschemotherapyinpatientswithplatinum-treatedlocallyadvancedormetastaticurothelialcarcinoma(IMvigor211):amulticentre,open-label,phase3randomisedcontrolledtrial.Lancet391,748–757(2018).CAS  PubMed  GoogleScholar  Rittmeyer,A.etal.Atezolizumabversusdocetaxelinpatientswithpreviouslytreatednon-small-celllungcancer(OAK):aphase3,open-label,multicentrerandomisedcontrolledtrial.Lancet389,255–265(2017).PubMed  GoogleScholar  Schmid,P.etal.Atezolizumabandnab-paclitaxelinadvancedtriple-negativebreastcancer.N.Engl.J.Med.379,2108–2121(2018).CAS  PubMed  GoogleScholar  Horn,L.etal.First-lineatezolizumabpluschemotherapyinextensive-stagesmall-celllungcancer.N.Engl.J.Med.379,2220–2229(2018).CAS  PubMed  GoogleScholar  Kaufman,H.L.etal.Avelumabinpatientswithchemotherapy-refractorymetastaticMerkelcellcarcinoma:amulticentre,single-group,open-label,phase2trial.LancetOncol.17,1374–1385(2016).CAS  PubMed  PubMedCentral  GoogleScholar  Patel,M.R.etal.Avelumabinmetastaticurothelialcarcinomaafterplatinumfailure(JAVELINSolidTumor):pooledresultsfromtwoexpansioncohortsofanopen-label,phase1trial.LancetOncol.19,51–64(2018).CAS  PubMed  GoogleScholar  Motzer,R.J.etal.Avelumabplusaxitinibversussunitinibforadvancedrenal-cellcarcinoma.N.Engl.J.Med.380,1103–1115(2019).CAS  PubMed  PubMedCentral  GoogleScholar  Powles,T.etal.Efficacyandsafetyofdurvalumabinlocallyadvancedormetastaticurothelialcarcinoma:updatedresultsfromaphase1/2open-labelstudy.JAMAOncol.3,e172411(2017).PubMed  PubMedCentral  GoogleScholar  Antonia,S.J.etal.DurvalumabafterchemoradiotherapyinstageIIInon-small-celllungcancer.N.Engl.J.Med.377,1919–1929(2017).CAS  PubMed  GoogleScholar  Fritz,J.M.&Lenardo,M.J.Developmentofimmunecheckpointtherapyforcancer.J.Exp.Med.216,1244–1254(2019).CAS  PubMed  PubMedCentral  GoogleScholar  Michot,J.M.etal.Immune-relatedadverseeventswithimmunecheckpointblockade:acomprehensivereview.Eur.J.Cancer54,139–148(2016).CAS  PubMed  GoogleScholar  Kumar,V.etal.Currentdiagnosisandmanagementofimmunerelatedadverseevents(irAEs)inducedbyimmunecheckpointinhibitortherapy.Front.Pharmacol.8,49(2017).Thiscomprehensivereviewdescribesthediagnosisofthecommonimmune-relatedadverseeventsobservedinpatientstreatedwithimmunecheckpointinhibitorsandthesubsequentclinicalmanagementofthesesideeffects.CAS  PubMed  PubMedCentral  GoogleScholar  Postow,M.A.,Sidlow,R.&Hellmann,M.D.Immune-relatedadverseeventsassociatedwithimmunecheckpointblockade.N.Engl.J.Med.378,158–168(2018).CAS  PubMed  GoogleScholar  Wang,P.-F.etal.Immune-relatedadverseeventsassociatedwithanti-PD-1/PD-L1treatmentformalignancies:ameta-analysis.Front.Pharmacol.8,730(2017).PubMed  PubMedCentral  GoogleScholar  Champiat,S.etal.Hyperprogressivediseaseisanewpatternofprogressionincancerpatientstreatedbyanti-PD-1/PD-L1.Clin.CancerRes.23,1920–1928(2017).CAS  PubMed  GoogleScholar  Saada-Bouzid,E.etal.Hyperprogressionduringanti-PD-1/PD-L1therapyinpatientswithrecurrentand/ormetastaticheadandnecksquamouscellcarcinoma.Ann.Oncol.28,1605–1611(2017).CAS  PubMed  GoogleScholar  Ferrara,R.etal.Hyperprogressivediseaseinpatientswithadvancednon-smallcelllungcancertreatedwithPD-1/PD-L1inhibitorsorwithsingle-agentchemotherapy.JAMAOncol.4,1543–1552(2018).PubMed  PubMedCentral  GoogleScholar  Rauch,D.A.etal.RapidprogressionofadultT-cellleukemia/lymphomaastumor-infiltratingTregsafterPD-1blockade.Blood134,1406–1414(2019).PubMed  PubMedCentral  GoogleScholar  Tazdait,M.etal.PatternsofresponsesinmetastaticNSCLCduringPD-1orPDL-1inhibitortherapy:comparisonofRECIST1.1,irRECISTandiRECISTcriteria.Eur.J.Cancer88,38–47(2018).CAS  PubMed  GoogleScholar  Champiat,S.etal.Hyperprogressivedisease:recognizinganovelpatterntoimprovepatientmanagement.Nat.Rev.Clin.Oncol.15,748–762(2018).CAS  PubMed  GoogleScholar  Liu,J.,Blake,S.J.,Smyth,M.J.&Teng,M.W.ImprovedmousemodelstoassesstumourimmunityandirAEsaftercombinationcancerimmunotherapies.Clin.TranslImmunol.3,e22(2014). GoogleScholar  Du,X.etal.AreappraisalofCTLA-4checkpointblockadeincancerimmunotherapy.CellRes.28,416–432(2018).CAS  PubMed  PubMedCentral  GoogleScholar  Nishijima,T.F.,Shachar,S.S.,Nyrop,K.A.&Muss,H.B.SafetyandtolerabilityofPD-1/PD-L1inhibitorscomparedwithchemotherapyinpatientswithadvancedcancer:ameta-analysis.Oncologist22,470–479(2017).CAS  PubMed  PubMedCentral  GoogleScholar  Zhang,Y.etal.Hijackingantibody-inducedCTLA-4lysosomaldegradationforsaferandmoreeffectivecancerimmunotherapy.CellRes.29,609–627(2019).CAS  PubMed  PubMedCentral  GoogleScholar  Liu,Y.&Zheng,P.PreservingtheCTLA-4checkpointforsaferandmoreeffectivecancerimmunotherapy.TrendsPharmacol.Sci.41,4–12(2020).CAS  PubMed  GoogleScholar  Riley,R.S.,June,C.H.,Langer,R.&Mitchell,M.J.Deliverytechnologiesforcancerimmunotherapy.Nat.Rev.Drug.Discov.18,175–196(2019).CAS  PubMed  PubMedCentral  GoogleScholar  Friedman,C.F.,Proverbs-Singh,T.A.&Postow,M.A.Treatmentoftheimmune-relatedadverseeffectsofimmunecheckpointinhibitors:areview.JAMAOncol.2,1346–1353(2016).PubMed  GoogleScholar  Shahabi,V.etal.Geneexpressionprofilingofwholebloodinipilimumab-treatedpatientsforidentificationofpotentialbiomarkersofimmune-relatedgastrointestinaladverseevents.J.TranslMed.11,75(2013).CAS  PubMed  PubMedCentral  GoogleScholar  Callahan,M.K.etal.EvaluationofserumIL-17levelsduringipilimumabtherapy:correlationwithcolitis.J.Clin.Oncol.29,2505–2505(2011). GoogleScholar  Schindler,K.etal.Correlationofabsoluteandrelativeeosinophilcountswithimmune-relatedadverseeventsinmelanomapatientstreatedwithipilimumab.J.Clin.Oncol.32,9096(2014). GoogleScholar  Southam,C.M.,Brunschwig,A.,Levin,A.G.&Dizon,Q.S.Effectofleukocytesontransplantabilityofhumancancer.Cancer19,1743–1753(1966).Thisclinicalstudyisthefirsttodemonstratetheviabilityofusingpatient-derivedleukocytesandautologoustumourcellstopromotecancerregression.CAS  PubMed  GoogleScholar  Weiden,P.L.etal.Antileukemiceffectofgraft-versus-hostdiseaseinhumanrecipientsofallogeneic-marrowgrafts.N.Engl.J.Med.300,1068–1073(1979).CAS  PubMed  GoogleScholar  Rosenberg,S.A.etal.Useoftumor-infiltratinglymphocytesandinterleukin-2intheimmunotherapyofpatientswithmetastaticmelanoma.Apreliminaryreport.N.Engl.J.Med.319,1676–1680(1988).CAS  PubMed  GoogleScholar  Rosenberg,S.A.etal.Treatmentofpatientswithmetastaticmelanomawithautologoustumor-infiltratinglymphocytesandinterleukin2.J.NatlCancerInst.86,1159–1166(1994).CAS  PubMed  GoogleScholar  Rosenberg,S.A.etal.DurablecompleteresponsesinheavilypretreatedpatientswithmetastaticmelanomausingT-celltransferimmunotherapy.Clin.CancerRes.17,4550–4557(2011).ThisstudyexpandsontheclinicalsuccessofIL-2-expandedtumour-infiltratinglymphocytesincancertreatmentthroughtheadditionoflymphodepletionbeforeadministrationofthecellulartherapy.CAS  PubMed  PubMedCentral  GoogleScholar  Zacharakis,N.etal.Immunerecognitionofsomaticmutationsleadingtocompletedurableregressioninmetastaticbreastcancer.Nat.Med.24,724–730(2018).CAS  PubMed  PubMedCentral  GoogleScholar  Palmer,D.C.etal.CishactivelysilencesTCRsignalinginCD8+Tcellstomaintaintumortolerance.J.Exp.Med.212,2095(2015).CAS  PubMed  PubMedCentral  GoogleScholar  Perica,K.,Varela,J.C.,Oelke,M.&Schneck,J.AdoptiveTcellimmunotherapyforcancer.RambamMaimonidesMed.J.6,e0004(2015).PubMed  PubMedCentral  GoogleScholar  Garrido,F.,Aptsiauri,N.,Doorduijn,E.M.,GarciaLora,A.M.&vanHall,T.TheurgentneedtorecoverMHCclassIincancersforeffectiveimmunotherapy.Curr.Opin.Immunol.39,44–51(2016).CAS  PubMed  PubMedCentral  GoogleScholar  Kuwana,Y.etal.Expressionofchimericreceptorcomposedofimmunoglobulin-derivedVregionsandT-cellreceptor-derivedCregions.Biochem.Biophys.Res.Commun.149,960–968(1987).CAS  PubMed  GoogleScholar  Brocker,T.ChimericFv-ζorFv-εreceptorsarenotsufficienttoinduceactivationorcytokineproductioninperipheralTcells.Blood96,1999–2001(2000).CAS  PubMed  GoogleScholar  Jensen,M.C.etal.AntitransgenerejectionresponsescontributetoattenuatedpersistenceofadoptivelytransferredCD20/CD19-specificchimericantigenreceptorredirectedTcellsinhumans.Biol.BloodMarrowTranspl.16,1245–1256(2010).CAS  GoogleScholar  Maher,J.,Brentjens,R.J.,Gunset,G.,Riviere,I.&Sadelain,M.HumanT-lymphocytecytotoxicityandproliferationdirectedbyasinglechimericTCRζ/CD28receptor.Nat.Biotechnol.20,70–75(2002).ThispreclinicalstudyhighlightsanincreasedefficacyofCARTcellsthatincludesaco-stimulatorydomaincomparedwiththeCD3ζ-chainalone.CAS  PubMed  GoogleScholar  Kuhn,N.F.etal.CD40ligand-modifiedchimericantigenreceptorTcellsenhanceantitumorfunctionbyelicitinganendogenousantitumorresponse.CancerCell35,473–488.e6(2019).CAS  PubMed  PubMedCentral  GoogleScholar  Finney,H.M.,Akbar,A.N.&Lawson,A.D.ActivationofrestinghumanprimaryTcellswithchimericreceptors:costimulationfromCD28,induciblecostimulator,CD134,andCD137inserieswithsignalsfromtheTCRζchain.J.Immunol.172,104–113(2004).CAS  PubMed  GoogleScholar  Imai,C.etal.Chimericreceptorswith4-1BBsignalingcapacityprovokepotentcytotoxicityagainstacutelymphoblasticleukemia.Leukemia18,676–684(2004).CAS  PubMed  GoogleScholar  Rafiq,S.etal.TargeteddeliveryofaPD-1-blockingscFvbyCAR-Tcellsenhancesanti-tumorefficacyinvivo.Nat.Biotechnol.36,847–856(2018).CAS  PubMed  PubMedCentral  GoogleScholar  Eyquem,J.etal.TargetingaCARtotheTRAClocuswithCRISPR/Cas9enhancestumourrejection.Nature543,113–117(2017).CAS  PubMed  PubMedCentral  GoogleScholar  Porter,D.L.,Levine,B.L.,Kalos,M.,Bagg,A.&June,C.H.Chimericantigenreceptor-modifiedTcellsinchroniclymphoidleukemia.N.Engl.J.Med.365,725–733(2011).ThispilotclinicalstudydemonstratesthefeasibilityandpreliminaryefficacyofCD19-directedCARTcellsinchroniclymphocyticleukaemia.CAS  PubMed  PubMedCentral  GoogleScholar  Brentjens,R.J.etal.CD19-targetedTcellsrapidlyinducemolecularremissionsinadultswithchemotherapy-refractoryacutelymphoblasticleukemia.Sci.TranslMed.5,177ra138(2013).Beyondchroniclymphocyticleukaemia,thisclinicaltrialdemonstratesthatCD19-directedCARTcellscouldinduceremissionintheacuteformofthedisease.CAS  Article  GoogleScholar  Park,J.H.etal.Long-termfollow-upofCD19CARtherapyinacutelymphoblasticleukemia.N.Engl.J.Med.378,449–459(2018).CAS  PubMed  PubMedCentral  GoogleScholar  Neelapu,S.S.etal.AxicabtageneciloleucelCART-celltherapyinrefractorylargeB-celllymphoma.N.Engl.J.Med.377,2531–2544(2017).CAS  PubMed  PubMedCentral  GoogleScholar  Fry,T.J.etal.CD22-targetedCARTcellsinduceremissioninB-ALLthatisnaiveorresistanttoCD19-targetedCARimmunotherapy.Nat.Med.24,20–28(2018).CAS  PubMed  GoogleScholar  Jackson,H.J.,Rafiq,S.&Brentjens,R.J.DrivingCART-cellsforward.Nat.Rev.Clin.Oncol.13,370–383(2016).CAS  PubMed  PubMedCentral  GoogleScholar  Yamamoto,T.N.,Kishton,R.J.&Restifo,N.P.Developingneoantigen-targetedTcell-basedtreatmentsforsolidtumors.Nat.Med.25,1488–1499(2019).CAS  PubMed  GoogleScholar  Raje,N.etal.Anti-BCMACART-celltherapybb2121inrelapsedorrefractorymultiplemyeloma.N.Engl.J.Med.380,1726–1737(2019).CAS  PubMed  PubMedCentral  GoogleScholar  Cohen,A.D.etal.Bcellmaturationantigen-specificCARTcellsareclinicallyactiveinmultiplemyeloma.J.Clin.Invest.129,2210–2221(2019).PubMed  PubMedCentral  GoogleScholar  Smith,E.L.etal.GPRC5DisatargetfortheimmunotherapyofmultiplemyelomawithrationallydesignedCARTcells.Sci.TranslMed.11,eaau7746(2019).PubMed  PubMedCentral  GoogleScholar  Beatty,G.L.etal.Mesothelin-specificchimericantigenreceptormRNA-engineeredTcellsinduceanti-tumoractivityinsolidmalignancies.CancerImmunol.Res.2,112–120(2014).CAS  PubMed  GoogleScholar  Kershaw,M.H.etal.AphaseIstudyonadoptiveimmunotherapyusinggene-modifiedTcellsforovariancancer.Clin.CancerRes.12,6106–6115(2006).CAS  PubMed  PubMedCentral  GoogleScholar  Park,J.R.etal.Adoptivetransferofchimericantigenreceptorre-directedcytolyticTlymphocyteclonesinpatientswithneuroblastoma.Mol.Ther.15,825–833(2007).CAS  PubMed  GoogleScholar  Majzner,R.G.etal.CARTcellstargetingB7-H3,apan-cancerantigen,demonstratepotentpreclinicalactivityagainstpediatricsolidtumorsandbraintumors.Clin.CancerRes.25,2560–2574(2019).CAS  PubMed  PubMedCentral  GoogleScholar  Batchu,R.B.etal.Inhibitionofinterleukin-10inthetumormicroenvironmentcanrestoremesothelinchimericantigenreceptorTcellactivityinpancreaticcancerinvitro.Surgery163,627–632(2018).PubMed  GoogleScholar  Chang,Z.L.etal.RewiringT-cellresponsestosolublefactorswithchimericantigenreceptors.Nat.Chem.Biol.14,317–324(2018).CAS  PubMed  PubMedCentral  GoogleScholar  Zhao,J.,Zhao,J.&Perlman,S.DifferentialeffectsofIL-12onTregsandnon-TregTcells:rolesofIFN-γ,IL-2andIL-2R.PLoSOne7,e46241(2012).CAS  PubMed  PubMedCentral  GoogleScholar  Chmielewski,M.,Kopecky,C.,Hombach,A.A.&Abken,H.IL-12releasebyengineeredTcellsexpressingchimericantigenreceptorscaneffectivelymusteranantigen-independentmacrophageresponseontumorcellsthathaveshutdowntumorantigenexpression.CancerRes.71,5697–5706(2011).CAS  PubMed  GoogleScholar  Kerkar,S.P.etal.IL-12triggersaprogrammaticchangeindysfunctionalmyeloid-derivedcellswithinmousetumors.J.Clin.Invest.121,4746–4757(2011).CAS  PubMed  PubMedCentral  GoogleScholar  Koneru,M.,Purdon,T.J.,Spriggs,D.,Koneru,S.&Brentjens,R.J.IL-12secretingtumor-targetedchimericantigenreceptorTcellseradicateovariantumorsinvivo.Oncoimmunology4,e994446(2015).PubMed  PubMedCentral  GoogleScholar  Yeku,O.O.,Purdon,T.J.,Koneru,M.,Spriggs,D.&Brentjens,R.J.ArmoredCARTcellsenhanceantitumorefficacyandovercomethetumormicroenvironment.Sci.Rep.7,10541(2017).PubMed  PubMedCentral  GoogleScholar  Koneru,M.,O’Cearbhaill,R.,Pendharkar,S.,Spriggs,D.R.&Brentjens,R.J.AphaseIclinicaltrialofadoptiveTcelltherapyusingIL-12secretingMUC-16ectodirectedchimericantigenreceptorsforrecurrentovariancancer.J.TranslMed.13,102(2015).PubMed  PubMedCentral  GoogleScholar  Wilkie,S.etal.Selectiveexpansionofchimericantigenreceptor-targetedT-cellswithpotenteffectorfunctionusinginterleukin-4.J.Biol.Chem.285,25538–25544(2010).CAS  PubMed  PubMedCentral  GoogleScholar  vanSchalkwyk,M.C.etal.DesignofaphaseIclinicaltrialtoevaluateintratumoraldeliveryofErbB-targetedchimericantigenreceptorT-cellsinlocallyadvancedorrecurrentheadandneckcancer.Hum.GeneTher.Clin.Dev.24,134–142(2013).PubMed  GoogleScholar  Lynn,R.C.etal.c-JunoverexpressioninCARTcellsinducesexhaustionresistance.Nature576,293–300(2019).CAS  PubMed  PubMedCentral  GoogleScholar  Brudno,J.N.&Kochenderfer,J.N.ToxicitiesofchimericantigenreceptorTcells:recognitionandmanagement.Blood127,3321–3330(2016).ThisreviewdetailstheadverseeffectsassociatedwithCARTcelltherapyandtheirsubsequentclinicalmanagement.CAS  PubMed  PubMedCentral  GoogleScholar  Neelapu,S.S.etal.ChimericantigenreceptorT-celltherapy—assessmentandmanagementoftoxicities.Nat.Rev.Clin.Oncol.15,47–62(2018).CAS  PubMed  GoogleScholar  Shimabukuro-Vornhagen,A.etal.Cytokinereleasesyndrome.J.Immunother.Cancer6,56(2018).PubMed  PubMedCentral  GoogleScholar  Grupp,S.A.etal.Chimericantigenreceptor-modifiedTcellsforacutelymphoidleukemia.N.Engl.J.Med.368,1509–1518(2013).CAS  PubMed  PubMedCentral  GoogleScholar  Conley,M.E.etal.PrimaryBcellimmunodeficiencies:comparisonsandcontrasts.Annu.Rev.Immunol.27,199–227(2009).CAS  PubMed  GoogleScholar  Giavridis,T.etal.CARTcell-inducedcytokinereleasesyndromeismediatedbymacrophagesandabatedbyIL-1blockade.Nat.Med.24,731–738(2018).CAS  PubMed  PubMedCentral  GoogleScholar  Ghorashian,S.etal.EnhancedCARTcellexpansionandprolongedpersistenceinpediatricpatientswithALLtreatedwithalow-affinityCD19CAR.Nat.Med.25,1408–1414(2019).CAS  PubMed  GoogleScholar  Bielamowicz,K.etal.TrivalentCARTcellsovercomeinterpatientantigenicvariabilityinglioblastoma.NeuroOncol.20,506–518(2018).CAS  PubMed  GoogleScholar  Hung,C.F.etal.Developmentofanti-humanmesothelin-targetedchimericantigenreceptormessengerRNA-transfectedperipheralbloodlymphocytesforovariancancertherapy.Hum.GeneTher.29,614–625(2018).CAS  PubMed  PubMedCentral  GoogleScholar  Jones,B.S.,Lamb,L.S.,Goldman,F.&DiStasi,A.Improvingthesafetyofcelltherapyproductsbysuicidegenetransfer.Front.Pharmacol.5,254–254(2014).PubMed  PubMedCentral  GoogleScholar  Hernandez,I.,Prasad,V.&Gellad,W.F.TotalcostsofchimericantigenreceptorT-cellimmunotherapy.JAMAOncol.4,994–996(2018).PubMed  PubMedCentral  GoogleScholar  Moon,E.K.,Langer,C.J.&Albelda,S.M.Theeraofcheckpointblockadeinlungcancer:takingthebrakesofftheimmunesystem.Ann.Am.Thorac.Soc.14,1248–1260(2017).PubMed  GoogleScholar  Vormittag,P.,Gunn,R.,Ghorashian,S.&Veraitch,F.S.AguidetomanufacturingCARTcelltherapies.Curr.Opin.Biotechnol.53,164–181(2018).CAS  PubMed  GoogleScholar  Guo,C.etal.Therapeuticcancervaccines:past,present,andfuture.Adv.CancerRes.119,421–475(2013).CAS  PubMed  PubMedCentral  GoogleScholar  Morales,A.,Eidinger,D.&Bruce,A.W.IntracavitaryBacillusCalmette–Guerininthetreatmentofsuperficialbladdertumors.J.Urol.116,180–183(1976).CAS  PubMed  GoogleScholar  vanderBruggen,P.etal.AgeneencodinganantigenrecognizedbycytolyticTlymphocytesonahumanmelanoma.Science254,1643–1647(1991).ThisearlystudyidentifiesamelanomaneoantigenthatcouldelicitaspecificcytolyticTcellresponse.PubMed  GoogleScholar  Hanna,M.G.Jr.&Peters,L.C.ImmunotherapyofestablishedmicrometastaseswithBacillusCalmette–Guerintumorcellvaccine.CancerRes.38,204–209(1978).PubMed  GoogleScholar  Heicappell,R.,Schirrmacher,V.,vonHoegen,P.,Ahlert,T.&Appelhans,B.Preventionofmetastaticspreadbypostoperativeimmunotherapywithvirallymodifiedautologoustumorcells.I.Parametersforoptimaltherapeuticeffects.Int.J.Cancer37,569–577(1986).CAS  PubMed  GoogleScholar  Plaksin,D.etal.Effectiveanti-metastaticmelanomavaccinationwithtumorcellstransfectedwithMHCgenesand/orinfectedwithNewcastlediseasevirus(NDV).Int.J.Cancer59,796–801(1994).CAS  PubMed  GoogleScholar  Burke,S.etal.OncolyticNewcastlediseasevirusactivationoftheinnateimmuneresponseandprimingofantitumoradaptiveresponsesinvitro.CancerImmunol.Immunother.https://doi.org/10.1007/s00262-020-02495-x(2020).Curran,M.A.&Allison,J.P.Tumorvaccinesexpressingflt3ligandsynergizewithctla-4blockadetorejectpreimplantedtumors.CancerRes.69,7747–7755(2009).CAS  PubMed  PubMedCentral  GoogleScholar  Rizvi,N.A.etal.Cancerimmunology.MutationallandscapedeterminessensitivitytoPD-1blockadeinnon-smallcelllungcancer.Science348,124–128(2015).CAS  PubMed  PubMedCentral  GoogleScholar  Tran,E.etal.Immunogenicityofsomaticmutationsinhumangastrointestinalcancers.Science350,1387–1390(2015).CAS  PubMed  PubMedCentral  GoogleScholar  Castle,J.C.etal.Exploitingthemutanomefortumorvaccination.CancerRes.72,1081–1091(2012).Byusingnext-generationDNAsequencing,thisstudyidentifiessomaticmutationsthatcreatenovelimmunogenicepitopesthatcanbesuccessfullytargetedbytherapeuticvaccination.CAS  PubMed  GoogleScholar  Kreiter,S.etal.MutantMHCclassIIepitopesdrivetherapeuticimmuneresponsestocancer.Nature520,692–696(2015).CAS  PubMed  PubMedCentral  GoogleScholar  Duan,F.etal.Genomicandbioinformaticprofilingofmutationalneoepitopesrevealsnewrulestopredictanticancerimmunogenicity.J.Exp.Med.211,2231–2248(2014).PubMed  PubMedCentral  GoogleScholar  Gubin,M.M.etal.Checkpointblockadecancerimmunotherapytargetstumour-specificmutantantigens.Nature515,577–581(2014).CAS  PubMed  PubMedCentral  GoogleScholar  Matsushita,H.etal.CancerexomeanalysisrevealsaT-cell-dependentmechanismofcancerimmunoediting.Nature482,400–404(2012).CAS  PubMed  PubMedCentral  GoogleScholar  Yadav,M.etal.Predictingimmunogenictumourmutationsbycombiningmassspectrometryandexomesequencing.Nature515,572–576(2014).CAS  PubMed  GoogleScholar  Alspach,E.etal.MHC-IIneoantigensshapetumourimmunityandresponsetoimmunotherapy.Nature574,696–701(2019).CAS  PubMed  PubMedCentral  GoogleScholar  Sahin,U.&Tureci,O.Personalizedvaccinesforcancerimmunotherapy.Science359,1355–1360(2018).CAS  PubMed  GoogleScholar  Zhang,X.,Sharma,P.K.,PeterGoedegebuure,S.&Gillanders,W.E.Personalizedcancervaccines:targetingthecancermutanome.Vaccine35,1094–1100(2017).CAS  PubMed  GoogleScholar  Ott,P.A.etal.Animmunogenicpersonalneoantigenvaccineforpatientswithmelanoma.Nature547,217–221(2017).CAS  PubMed  PubMedCentral  GoogleScholar  Sahin,U.etal.PersonalizedRNAmutanomevaccinesmobilizepoly-specifictherapeuticimmunityagainstcancer.Nature547,222–226(2017).CAS  PubMed  GoogleScholar  Nielsen,M.,Lund,O.,Buus,S.&Lundegaard,C.MHCclassIIepitopepredictivealgorithms.Immunology130,319–328(2010).CAS  PubMed  PubMedCentral  GoogleScholar  Motzer,R.J.etal.Nivolumabplusipilimumabversussunitinibinadvancedrenal-cellcarcinoma.N.Engl.J.Med.378,1277–1290(2018).CAS  PubMed  PubMedCentral  GoogleScholar  Wolchok,J.D.etal.Overallsurvivalwithcombinednivolumabandipilimumabinadvancedmelanoma.N.Engl.J.Med.377,1345–1356(2017).Thislong-termanalysisofapreviousphaseIIIclinicaltrialdemonstratesthatnivolumabandipilimumabcombinationtherapyconferredincreasedsurvivalcomparedwithipilimumabalone.CAS  PubMed  PubMedCentral  GoogleScholar  Zhao,Y.etal.PD-L1:CD80cis-heterodimertriggerstheco-stimulatoryreceptorCD28whilerepressingtheinhibitoryPD-1andCTLA-4pathways.Immunity51,1059–1073.e9(2019).ThisstudyelegantlyimplicatesliganddimerizationinthecrosstalkbetweentheCD28,CTLA4andPD1pathways.CAS  PubMed  PubMedCentral  GoogleScholar  Butte,M.J.,Keir,M.E.,Phamduy,T.B.,Sharpe,A.H.&Freeman,G.J.Programmeddeath-1ligand1interactsspecificallywiththeB7-1costimulatorymoleculetoinhibitTcellresponses.Immunity27,111–122(2007).CAS  PubMed  PubMedCentral  GoogleScholar  Ngwa,W.etal.Usingimmunotherapytoboosttheabscopaleffect.Nat.Rev.Cancer18,313–322(2018).CAS  PubMed  PubMedCentral  GoogleScholar  Twyman-SaintVictor,C.etal.Radiationanddualcheckpointblockadeactivatenon-redundantimmunemechanismsincancer.Nature520,373–377(2015).CAS  PubMed  GoogleScholar  Postow,M.A.etal.Immunologiccorrelatesoftheabscopaleffectinapatientwithmelanoma.N.Engl.J.Med.366,925–931(2012).CAS  PubMed  PubMedCentral  GoogleScholar  Burugu,S.,Dancsok,A.R.&Nielsen,T.O.Emergingtargetsincancerimmunotherapy.Semin.CancerBiol.52,39–52(2018).CAS  PubMed  GoogleScholar  Donini,C.,D’Ambrosio,L.,Grignani,G.,Aglietta,M.&Sangiolo,D.Nextgenerationimmune-checkpointsforcancertherapy.J.Thorac.Dis.10,S1581–S1601(2018).PubMed  PubMedCentral  GoogleScholar  Marin-Acevedo,J.A.etal.Nextgenerationofimmunecheckpointtherapyincancer:newdevelopmentsandchallenges.J.Hematol.Oncol.11,39(2018).PubMed  PubMedCentral  GoogleScholar  He,Y.etal.Lymphocyte-activationgene-3,animportantimmunecheckpointincancer.CancerSci.107,1193–1197(2016).CAS  PubMed  PubMedCentral  GoogleScholar  Deng,W.W.etal.LAG-3conferspoorprognosisanditsblockadereshapesantitumorresponseinheadandnecksquamouscellcarcinoma.Oncoimmunology5,e1239005(2016).PubMed  PubMedCentral  GoogleScholar  Sharma,P.&Allison,J.P.Thefutureofimmunecheckpointtherapy.Science348,56–61(2015).CAS  PubMed  GoogleScholar  Brignone,C.etal.First-linechemoimmunotherapyinmetastaticbreastcarcinoma:combinationofpaclitaxelandIMP321(LAG-3Ig)enhancesimmuneresponsesandantitumoractivity.J.TranslMed.8,71(2010).PubMed  PubMedCentral  GoogleScholar  Wang,J.etal.Fibrinogen-likeprotein1isamajorimmuneinhibitoryligandofLAG-3.Cell176,334–347.e12(2019).CAS  PubMed  GoogleScholar  Zhu,C.etal.TheTim-3ligandgalectin-9negativelyregulatesThelpertype1immunity.Nat.Immunol.6,1245–1252(2005).CAS  PubMed  GoogleScholar  Anderson,A.C.,Joller,N.&Kuchroo,V.K.Lag-3,Tim-3,andTIGIT:co-inhibitoryreceptorswithspecializedfunctionsinimmuneregulation.Immunity44,989–1004(2016).CAS  PubMed  PubMedCentral  GoogleScholar  Liu,J.etal.Immune-checkpointproteinsVISTAandPD-1nonredundantlyregulatemurineT-cellresponses.Proc.NatlAcad.Sci.USA112,6682–6687(2015).CAS  PubMed  PubMedCentral  GoogleScholar  Gao,J.etal.VISTAisaninhibitoryimmunecheckpointthatisincreasedafteripilimumabtherapyinpatientswithprostatecancer.Nat.Med.23,551–555(2017).CAS  PubMed  PubMedCentral  GoogleScholar  Powderly,J.etal.InterimresultsofanongoingphaseI,doseescalationstudyofMGA271(Fc-optimizedhumanizedanti-B7-H3monoclonalantibody)inpatientswithrefractoryB7-H3-expressingneoplasmsorneoplasmswhosevasculatureexpressesB7-H3.J.Immunother.Cancer3,O8(2015).PubMedCentral  GoogleScholar  Kramer,K.etal.Compartmentalintrathecalradioimmunotherapy:resultsfortreatmentformetastaticCNSneuroblastoma.J.Neurooncol.97,409–418(2010).PubMed  GoogleScholar  Tolcher,A.W.etal.Phase1,first-in-human,openlabel,doseescalationctudyofMGD009,ahumanizedB7-H3×CD3dual-affinityre-targeting(DART)proteininpatientswithB7-H3-expressingneoplasmsorB7-H3expressingtumorvasculature.J.Clin.Oncol.34,TPS3105(2016). GoogleScholar  Chauvin,J.M.etal.TIGITandPD-1impairtumorantigen-specificCD8+Tcellsinmelanomapatients.J.Clin.Invest.125,2046–2058(2015).PubMed  PubMedCentral  GoogleScholar  Kowolik,C.M.etal.CD28costimulationprovidedthroughaCD19-specificchimericantigenreceptorenhancesinvivopersistenceandantitumorefficacyofadoptivelytransferredTcells.CancerRes.66,10995–11004(2006).CAS  PubMed  GoogleScholar  Coyle,A.J.etal.TheCD28-relatedmoleculeICOSisrequiredforeffectiveTcell-dependentimmuneresponses.Immunity13,95–105(2000).CAS  PubMed  GoogleScholar  Fan,X.,Quezada,S.A.,Sepulveda,M.A.,Sharma,P.&Allison,J.P.EngagementoftheICOSpathwaymarkedlyenhancesefficacyofCTLA-4blockadeincancerimmunotherapy.J.Exp.Med.211,715(2014).CAS  PubMed  PubMedCentral  GoogleScholar  Vonderheide,R.H.etal.Tremelimumabincombinationwithexemestaneinpatientswithadvancedbreastcancerandtreatment-associatedmodulationofinduciblecostimulatorexpressiononpatientTcells.Clin.CancerRes.16,3485–3494(2010).CAS  PubMed  GoogleScholar  Kjaergaard,J.etal.TherapeuticefficacyofOX-40receptorantibodydependsontumorimmunogenicityandanatomicsiteoftumorgrowth.CancerRes.60,5514–5521(2000).CAS  PubMed  GoogleScholar  Weinberg,A.D.etal.EngagementoftheOX-40receptorinvivoenhancesantitumorimmunity.J.Immunol.164,2160–2169(2000).CAS  PubMed  GoogleScholar  Valzasina,B.etal.TriggeringofOX40(CD134)onCD4+CD25+Tcellsblockstheirinhibitoryactivity:anovelregulatoryroleforOX40anditscomparisonwithGITR.Blood105,2845–2851(2005).CAS  PubMed  GoogleScholar  Parrott,D.M.V.,deSousa,M.A.B.&East,J.Thymus-dependentareasinthelymphoidorgansofneonatallythymectomizedmice.J.Exp.Med.123,191–204(1966).CAS  PubMed  PubMedCentral  GoogleScholar  Miller,J.F.&Mitchell,G.F.Celltocellinteractionintheimmuneresponse.I.Hemolysin-formingcellsinneonatallythymectomizedmicereconstitutedwiththymusorthoracicductlymphocytes.J.Exp.Med.128,801–820(1968).CAS  PubMed  PubMedCentral  GoogleScholar  LeBien,T.W.&Tedder,T.F.Blymphocytes:howtheydevelopandfunction.Blood112,1570–1580(2008).CAS  PubMed  PubMedCentral  GoogleScholar  vandenBroek,T.,Borghans,J.A.M.&vanWijk,F.ThefullspectrumofhumannaiveTcells.Nat.Rev.Immunol.18,363–373(2018).PubMed  GoogleScholar  Vignali,D.A.,Collison,L.W.&Workman,C.J.HowregulatoryTcellswork.Nat.Rev.Immunol.8,523–532(2008).CAS  PubMed  PubMedCentral  GoogleScholar  Kumar,B.V.,Connors,T.J.&Farber,D.L.HumanTcelldevelopment,localization,andfunctionthroughoutlife.Immunity48,202–213(2018).CAS  PubMed  PubMedCentral  GoogleScholar  Nikolich-Zugich,J.,Slifka,M.K.&Messaoudi,I.ThemanyimportantfacetsofT-cellrepertoirediversity.Nat.Rev.Immunol.4,123–132(2004).CAS  PubMed  GoogleScholar  Wilson,I.A.&Garcia,K.C.T-cellreceptorstructureandTCRcomplexes.Curr.Opin.Struct.Biol.7,839–848(1997).CAS  PubMed  GoogleScholar  Mueller,D.L.,Jenkins,M.K.&Schwartz,R.H.Clonalexpansionversusfunctionalclonalinactivation:acostimulatorysignallingpathwaydeterminestheoutcomeofTcellantigenreceptoroccupancy.Annu.Rev.Immunol.7,445–480(1989).CAS  PubMed  GoogleScholar  Martin,P.J.etal.A44kilodaltoncellsurfacehomodimerregulatesinterleukin2productionbyactivatedhumanTlymphocytes.J.Immunol.136,3282–3287(1986).CAS  PubMed  GoogleScholar  Gmunder,H.&Lesslauer,W.A45-kDahumanT-cellmembraneglycoproteinfunctionsintheregulationofcellproliferativeresponses.Eur.J.Biochem.142,153–160(1984).CAS  PubMed  GoogleScholar  June,C.H.,Ledbetter,J.A.,Linsley,P.S.&Thompson,C.B.RoleoftheCD28receptorinT-cellactivation.Immunol.Today11,211–216(1990).CAS  PubMed  GoogleScholar  Lesslauer,W.etal.T90/44(9.3antigen).AcellsurfacemoleculewithafunctioninhumanTcellactivation.Eur.J.Immunol.16,1289–1296(1986).CAS  PubMed  GoogleScholar  Hansen,J.A.,Martin,P.J.&Nowinski,R.C.MonoclonalantibodiesidentifyinganovelT-cellantigenandIaantigensofhumanlymphocytes.Immunogenetics10,247–260(1980).ThisstudyisthefirsttoidentifyanewTcellantigen,laternamedCD28,thatfunctionsinTcellco-stimulation. GoogleScholar  Hara,T.,Fu,S.M.&Hansen,J.A.HumanTcellactivation.II.AnewactivationpathwayusedbyamajorTcellpopulationviaadisulfide-bondeddimerofa44kilodaltonpolypeptide(9.3antigen).J.Exp.Med.161,1513–1524(1985)ThisstudyprovidesevidencethattherecentlydiscoveredCD28receptorfunctionedtoaugmentTcellactivation.CAS  PubMed  GoogleScholar  Jin,B.,Sun,T.,Yu,X.H.,Yang,Y.X.&Yeo,A.E.TheeffectsofTLRactivationonT-celldevelopmentanddifferentiation.Clin.Dev.Immunol.2012,836485(2012).PubMed  PubMedCentral  GoogleScholar  Sharpe,A.H.&Freeman,G.J.TheB7-CD28superfamily.Nat.Rev.Immunol.2,116–126(2002).CAS  PubMed  GoogleScholar  Buchbinder,E.I.&Desai,A.CTLA-4andPD-1pathways:similarities,differences,andimplicationsoftheirinhibition.Am.J.Clin.Oncol.39,98–106(2016).CAS  PubMed  PubMedCentral  GoogleScholar  Cantrell,D.A.T-cellantigenreceptorsignaltransduction.Immunology105,369–374(2002).CAS  PubMed  PubMedCentral  GoogleScholar  Palacios,E.H.&Weiss,A.FunctionoftheSrc-familykinases,LckandFyn,inT-celldevelopmentandactivation.Oncogene23,7990–8000(2004).CAS  PubMed  GoogleScholar  Alexander,D.R.TheCD45tyrosinephosphatase:apositiveandnegativeregulatorofimmunecellfunction.Semin.Immunol.12,349–359(2000).CAS  PubMed  GoogleScholar  Rossy,J.,Williamson,D.J.&Gaus,K.HowdoesthekinaseLckphosphorylatetheTcellreceptor?Spatialorganizationasaregulatorymechanism.Front.Immunol.3,167(2012).CAS  PubMed  PubMedCentral  GoogleScholar  Macian,F.etal.Transcriptionalmechanismsunderlyinglymphocytetolerance.Cell109,719–731(2002).CAS  PubMed  GoogleScholar  Miller,J.F.&Morahan,G.PeripheralTcelltolerance.Annu.Rev.Immunol.10,51–69(1992).CAS  PubMed  GoogleScholar  Lenardo,M.etal.MatureTlymphocyteapoptosis-immuneregulationinadynamicandunpredictableantigenicenvironment.Annu.Rev.Immunol.17,221–253(1999).CAS  PubMed  GoogleScholar  Zheng,L.,Li,J.&Lenardo,M.Restimulation-inducedcelldeath:newmedicalandresearchperspectives.Immunol.Rev.277,44–60(2017).CAS  PubMed  GoogleScholar  Mueller,S.N.,Gebhardt,T.,Carbone,F.R.&Heath,W.R.MemoryTcellsubsets,migrationpatterns,andtissueresidence.Annu.Rev.Immunol.31,137–161(2013).CAS  PubMed  GoogleScholar  Sade-Feldman,M.etal.DefiningTcellstatesassociatedwithresponsetocheckpointimmunotherapyinmelanoma.Cell175,998–1013.e20(2018).CAS  PubMed  PubMedCentral  GoogleScholar  Azizi,E.etal.Single-cellmapofdiverseimmunephenotypesinthebreasttumormicroenvironment.Cell174,1293–1308.e36(2018).CAS  PubMed  PubMedCentral  GoogleScholar  Pauken,K.E.etal.EpigeneticstabilityofexhaustedTcellslimitsdurabilityofreinvigorationbyPD-1blockade.Science354,1160–1165(2016).CAS  PubMed  PubMedCentral  GoogleScholar  Gide,T.N.etal.Distinctimmunecellpopulationsdefineresponsetoanti-PD-1monotherapyandanti-PD-1/anti-CTLA-4combinedtherapy.CancerCell35,238–255.e6(2019).CAS  PubMed  GoogleScholar  DownloadreferencesAcknowledgementsThisworkwassupportedbytheDivisionofIntramuralResearch,NationalInstituteofAllergyandInfectiousDiseases,NIH.A.D.W.wassupportedbytheEmoryUniversityMD/PhDProgram,NIHMD/PhDPartnershipsProgramandNIHOxford–CambridgeScholarsProgram.J.M.F.wassupportedbythePostdoctoralResearchAssociateTrainingProgramoftheNationalInstituteofGeneralMedicalSciences.TheauthorsthankR.Kissingerforhelpwiththeillustrations.TheythankG.DeLucaforhissupportofA.D.W.asaDPhilco-mentor.TheyalsothankY.Zhangforinvaluableeditorialandscientificfeedback.Lastly,theauthorsacknowledgeandapologizetoallresearchersinthisfieldwhomayhaveauthoredelegantstudiesthatwerenotcitedowingtospacelimitations.AuthorinformationAuthorsandAffiliationsMolecularDevelopmentoftheImmuneSystemSection,LaboratoryofImmuneSystemBiology,NationalInstituteofAllergyandInfectiousDiseases,NationalInstitutesofHealth,Bethesda,MD,USAAlexD.Waldman, JillM.Fritz & MichaelJ.LenardoClinicalGenomicsProgram,DivisionofIntramuralResearch,NationalInstituteofAllergyandInfectiousDiseases,NationalInstitutesofHealth,Bethesda,MD,USAAlexD.Waldman, JillM.Fritz & MichaelJ.LenardoAuthorsAlexD.WaldmanViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarJillM.FritzViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarMichaelJ.LenardoViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarContributionsTheauthorscontributedequallytoallaspectsofthearticle.CorrespondingauthorCorrespondenceto MichaelJ.Lenardo.Ethicsdeclarations Competinginterests Theauthorsdeclarenocompetinginterests. AdditionalinformationPeerreviewinformationNatureReviewsImmunologythanksJ.Oliaroandtheother,anonymous,reviewer(s)fortheircontributiontothepeerreviewofthiswork.Publisher’snoteSpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.GlossaryNeoantigens Antigensnotexpressedbyself-tissuesundernormalconditionsthatmanifestinthecontextofpathology;incancer,thesecouldbealteredproteins/peptidesencodedbymutatedgenes. Immunecheckpoint Amechanismofimmunecellinhibitionthatrestrainsactivation. Immunoglobulinsuperfamily Agroupofproteinswithgeneticandstructuralsimilaritiestoantibodies. Antigen-presentingcells (APCs).Immunecellsinvolvedintheuptakeandprocessingofantigenstoinitiatecellularimmuneresponses. CTLA4Ig SolublerecombinanthumancytotoxicTlymphocyteantigen4(CTLA4)fusedtotheimmunoglobulinFcdomainthatcompeteswithendogenousCD28foritsligands. Immunologicalsynapse Aninterfacebetweeninteractinglymphocytesandantigen-presentingcellsthatcontrolsantigen-inducedsignalling. Immuneconjugate Abiologicalunitthatcomprisesinteractinglymphocytesandantigen-presentingcells. IL-2 Acytokineessentialforlymphocyteactivation,proliferationandtolerance. Adaptorprotein Anintracytoplasmicproteinthatfacilitatesmolecularinteractionsandsignaltransduction. Antibody-dependentcell-mediatedcytotoxicity Theprocessbywhichantibody-basedopsonizationoftargetcellspromotestheirlysisbyimmunecytotoxiccells. BALB/c Analbinoinbredmousestraincommonlyusedinimmunologyresearch. Non-obesediabetic Aninbredmousestainwithenhancedsusceptibilitytospontaneousdevelopmentoftype1diabetesmellitus. Immunoreceptortyrosine-basedswitchmotif Aconservedaminoacidsequence(TxYxx(V/I))involvedinbothactivationandinhibitionofdownstreamsignallingdependingonthecelltypeandbiologicalcontext. Immunoreceptortyrosine-basedinhibitorymotif Aconservedaminoacidsequence(S/I/V/LxYxxI/V/L)involvedintherecruitmentofinhibitoryphosphatasestodampendownstreamsignalling. Tcellexhaustion Theprogressivelossofeffectorfunctionduetochroniclow-affinityantigenstimulation. Abscopalresponses Aphenomenoninwhichthetherapeuticeffectofradiationisextendedbeyondtheboundariesofthetissuethatwastreated Thelper2(TH2)cellskewing BiasingofCD4+Thelpercellstowardsaphenotypeessentialforhumoralimmunity. RightsandpermissionsReprintsandPermissionsAboutthisarticleCitethisarticleWaldman,A.D.,Fritz,J.M.&Lenardo,M.J.Aguidetocancerimmunotherapy:fromTcellbasicsciencetoclinicalpractice. NatRevImmunol20,651–668(2020).https://doi.org/10.1038/s41577-020-0306-5DownloadcitationAccepted:03April2020Published:20May2020IssueDate:November2020DOI:https://doi.org/10.1038/s41577-020-0306-5SharethisarticleAnyoneyousharethefollowinglinkwithwillbeabletoreadthiscontent:GetshareablelinkSorry,ashareablelinkisnotcurrentlyavailableforthisarticle.Copytoclipboard ProvidedbytheSpringerNatureSharedItcontent-sharinginitiative Furtherreading Therapeuticapplicationsofengineeredchimericantigenreceptors-Tcellforcancertherapy AminaHussain Beni-SuefUniversityJournalofBasicandAppliedSciences(2022) Naringeninandcryptotanshinoneshift theimmuneresponsetowardsTh1andmodulateTregulatorycellsviaJAK2/STAT3pathwayinbreastcancer ShokoofeNoori MitraNourbakhsh ZohrehAbdolvahabi BMCComplementaryMedicineandTherapies(2022) RecenthighlightsintheimmunomodulatoryaspectsofTregcell-derivedextracellularvesicles:specialemphasisonautoimmunediseasesandtransplantation YahyaAsemani SajadNajafi RezaJafari Cell&Bioscience(2022) TargetingRNAN6-methyladenosinemodification:apreciseweaponinovercomingtumorimmuneescape WeiLi YiHao DaPang MolecularCancer(2022) Theambiguousroleofobesityinoncologybypromotingcancerbutboostingantitumorimmunotherapy JoséAntônioFagundesAssumpção GabrielPasquarelli-do-Nascimento KellyGraceMagalhães JournalofBiomedicalScience(2022) DownloadPDF AssociatedContent Collection Tcells Advertisement Explorecontent Researcharticles Reviews&Analysis News&Comment Videos Currentissue Collections FollowusonFacebook FollowusonTwitter Signupforalerts RSSfeed Aboutthejournal Aims&Scope JournalInformation AbouttheEditors JournalCredits Editorialinputandchecks EditorialValuesStatement JournalMetrics Publishingmodel Editorialpolicies Posters Calendars Conferences WebFeeds Contact Publishwithus ForAuthors ForReferees Submitmanuscript Search Searcharticlesbysubject,keywordorauthor Showresultsfrom Alljournals Thisjournal Search Advancedsearch Quicklinks Explorearticlesbysubject Findajob Guidetoauthors Editorialpolicies Closebanner Close SignupfortheNatureBriefingnewsletter—whatmattersinscience,freetoyourinboxdaily. Emailaddress Signup IagreemyinformationwillbeprocessedinaccordancewiththeNatureandSpringerNatureLimitedPrivacyPolicy. Closebanner Close Getthemostimportantsciencestoriesoftheday,freeinyourinbox. SignupforNatureBriefing



請為這篇文章評分?