蚯蚓下雨天爬出地表後就回不去了? - 泛科學

文章推薦指數: 80 %
投票人數:10人

這現象達爾文認為是蚯蚓被寄生蟲寄生生病,所以爬出來後就死在地面上,Lankester(1921)認為蚯蚓爬出來就會死亡,原因可能與泡水泡太久有關,但我們 ... 000文字分享友善列印000動物世界自然生態蚯蚓下雨天爬出地表後就回不去了?活躍星系核・2015/04/22・3894字・閱讀時間約8分鐘・SR值533・七年級+追蹤文/HawayanaChuang上次介紹了蚯蚓為什麼要在大雨過後爬出地表?這次要介紹的是為什麼蚯蚓爬出來不爬回去?其實依據我之前的觀察,部分的蚯蚓是會爬回去的,但部分的蚯蚓卻沒有在雨後爬回土中,有些蚯蚓看起來好像迷航了,邊爬邊試探的似乎要找到可以鑽回土壤的地方,有些蚯蚓卻是奄奄一息狀的癱軟在地面上或小水窪中,甚至死亡。

由於現在的環境中柏油路或水泥地面佔了很大的總面積,所以爬出來的蚯蚓一旦爬上了柏油路或水泥地面就很難找到縫隙在鑽回土中,但那些癱軟的蚯蚓是怎麼一回事?這現象達爾文認為是蚯蚓被寄生蟲寄生生病,所以爬出來後就死在地面上,Lankester(1921)認為蚯蚓爬出來就會死亡,原因可能與泡水泡太久有關,但我們將這些蚯蚓帶回實驗室飼養,發現牠們其實都可以存活,所以很明顯的不是泡水太久的原因。

MerkerandBrauning在1927年時提出了一個假設:是紫外線麻痺牠們,讓牠們沒辦法爬行,所以後來被曬死了,不過這假設延續了幾十年都沒有確實的證據。

那麼紫外線到底是啥?可以厲害到把蚯蚓曬死?太陽光的輻射波長範圍很廣,其中波長在400-730nm之間稱為可見光(visible),大於730nm稱為紅外光(infra-red),而小於400nm的波段稱為紫外線(ultra-violet),因為其波長較可見光中波長最短的紫色光更短而名之。

紫外線又可依波長分為UV-A(320-400nm),UV-B(280-320nm),UV-C(280nm以下)三種,地面觀測的太陽輻射多集中在可見光波段,紫外線只佔全部的10%,其中以UV-A為主,至UV-B時以指數方式急速下降,UV-C波段的能量則趨近於零,原因是因為UV-C對大氣層的穿透力極差,在高空就被吸收或反射。

UV對生物有明顯的傷害,隨著波長越短傷害越大,UV-C對生物的殺傷力極大,但在自然狀態下無法到達地面,所以對地球上的生物影響不大。

反之,UV-A及UV-B,因此對生物的影響反而較為顯著。

source:Philips紫外線在醫學上被研究較為透徹,一大原因是會造成皮膚癌及黑色素腫瘤癌的發生機率增加,造成眼睛及免疫系統的傷害,一部份的原因是因為皮膚會產生較多的黑色素來抵禦紫外線的傷害,但這重要的防禦機制是女性的大敵~皮膚會變黑變鬆弛,還會產生黑班和暗沈!所以保養產品莫不提出防曬和美白效果來促進消費。

但UV真的只有傷害嗎?雖然目前因為臭氧層的破洞,使一般人談UV而色變,但是太陽紫外輻射其實有著許多好處,例如可以殺菌,將體表的細菌殺死,減少動物受細菌感染的機會,或應用於飲用水或養殖用水以殺死水中的細菌;紫外線是細胞製造維他命D3先質(pre-VitaminD3)的必須因子,在心理上,曬曬太陽會使身體感覺較舒服;紫外線可以幫助昆蟲找尋獵物,也有助於深海蝦類的視覺功能,因為他們的複眼中有感測紫外線的視蛋白(UV-opsin),因此可藉由紫外線產生視覺;另外有些植物藉由對紫外線的反射引誘昆蟲過來受粉等等。

寫了這麼多,讓我們回到蚯蚓不爬回去的問題~真的是紫外線造成蚯蚓在爬出地面後無法爬回土壤中的原因嗎?所以還是要做一下實驗,證實到底是什麼原因,我們利用了UV-A和UV-B兩種不同波長的紫外線燈箱來進行實驗,第一部份的假設是紫外線會影響蚯蚓的爬行行為,所以我們設計了一個密度高度土壤性質相同的土盆,讓蚯蚓在照射紫外線前先爬行一次,測量牠完全爬回土中所需的時間,然後再將蚯蚓照射不同強度的紫外線,之後再讓蚯蚓爬行一次同樣的的土盆,計算前後兩次爬行所需的時間比,如果比值越高,就代表紫外線照射後讓牠們花費的時間越多,亦即爬行能力降低,我們所用的紫外線輻射量為500-1500J/m2,500J/m2相當於紫外線指數中5級(即陰天或清晨照射一小時)的強度,1500J/m2則相當於照射3小時的強度,相對陸生生物來說,這樣的輻射量接近正常環境會出現的狀況。

我們使用了3種蚯蚓Amynthasgracilis,Methphireposthuma及Pontoscolexcorethrurus來實驗,A.gracilis是下雨後會爬出地表的種類,另外兩種則不會爬出地表,實驗結果中發現,Amynthasgracilis照射紫外線時會產生跳動及不正常的S形運動,隨著輻射量增加,這樣的行為就越明顯,而且體表還會分泌黃色的黏液在角質層下,而照射紫外線後這3種蚯蚓的爬行時間都增加,表示爬行行為明顯受到抑制。

(左圖是正常的A.gracilis,右圖是照射後的A.gracilis)(左圖為照射UV-A,右圖為照射UV-B)第二部分,我們接著將這些蚯蚓放回培養箱中測量照射UV後的死亡率,確認紫外線是否會造成蚯蚓死亡,結果顯示照射UV-A的3種蚯蚓在接下來的一星期中,都沒有個體的死亡,表示UV-A雖然會造成爬行行為的減緩但並未有明顯的致死性,但照射UV-B的蚯蚓就不同了,P.corethrurus並沒有個體死亡,但A.gracilis則是低輻射量下有部分個體死亡,高輻射量下100%個體在48小時內死亡,而M.posthuma則是高輻射量的個體也會在72-120小時內死亡,顯示了UV-B有很明顯的殺傷力。

第三部分由於蚯蚓是藉由濕潤的體表交換氣體和肌肉的收縮讓血液流動,因此,我們假設紫外線造成爬行能力的降低和一些體表的傷害會造成蚯蚓耗氧的降低,所以我們測量了蚯蚓的耗氧量發現,A.gracilis確實在照射UV-A或UV-B後耗氧降低,而M.posthuma則是在照射UV-A後耗氧降低,顯示紫外線的照射會影響牠們的耗氧。

所以總結來說,蚯蚓雖然生活在土壤中,不會輕易爬出地表,但在大雨過後的清晨常可看見許多蚯蚓在地上漫遊,並且有許多個體死亡,許多的學者提出了各種假設來解釋這個現象,但是他們通常會將”為什麼蚯蚓會爬出地表”和”為什麼之後蚯蚓會死亡”一起探討,但從野外觀察及實驗則認為這兩件事是不同的事件。

牠們會從地表爬出可能是前文中提到由於土壤被雨水淹滿,造成土壤中的氣體流通變差,一旦土壤中的空氣及水中的溶氧用完,蚯蚓就必須到地表上來獲得更多的氧氣或是利用大量的水來進行含氮廢物的排泄或因為環境中的含氮廢物過高,所以出來躲避此種環境,然而,這些原因並不會造成蚯蚓的死亡,M.posthuma會在照射UV-B後出現尾巴捲起的現象,而A.gracilis則會出現非常劇烈的行為反應,牠們會出現S形爬行及跳動的行為,這些行為的出現表示蚯蚓的環肌及縱肌無法順利的協調。

正常蚯蚓的運動是依靠環肌與縱肌的收縮及舒張,環肌收縮時,縱肌舒張,反之亦然,因此體節會分段的伸長或縮短,使身體朝一個固定的方向前進,可稱為蠕動,然而在一些情況下,肌肉的收縮不會伴隨個體的移動,稱為fictivelocomotion,這可以解釋蚯蚓的肌肉受到刺激無法作正常的收縮,因而出現S形爬行的行為。

再者,A.gracilis在照射後一段時間,蚯蚓會癱軟而無法運動,如同肌肉強直後無力再做任何運動,這情形類似MerkerandBrauning(1927)所假設的紫外線會麻痺蚯蚓一樣。

紫外線會造成的有害影響在許多生物中都被探討過,在這裡我們確定了紫外線確實會對蚯蚓產生危害:不管是UV-A或是UV-B的照射,蚯蚓都會出現不正常的行為反應或是體表組織的傷害,甚至死亡的情形,但是不同的紫外線輻射對不同種蚯蚓產生的效應並不相同。

實驗結果可以得知相同輻射量的UV-B的傷害遠大於UV-A,不過由於相同輻射量的UV-A所含之能量較UV-B低10倍,因此相同輻射量下UV-A對生物的傷害也較低,但是正常環境中UV-A輻射量卻是UV-B的10倍,因此,若在自然環境中,UV-A可能對蚯蚓仍具有強烈的影響,我們曾以8,000J/m2的UV-A照射A.gracilis發現如同照射UV-B1,500J/m2的黃色體液出現。

紫外線是太陽輻射之一,具有很高的能量,我們為了釐清蚯蚓會死亡的原因是紫外線本身照射所產生的傷害,還是紫外線造成溫度的升高,使蚯蚓受熱死亡,所以會控制環境溫度並事先用冰浴或事後冰敷的方式降低熱所可能產生的影響,發現蚯蚓的死亡率並不會因為冰浴或冰敷而有所改變,甚至冰敷過久反而造成蚯蚓更快死亡,顯示紫外線對蚯蚓產生的傷害,不是單純的溫度升高造成,而是可能紫外線的能量引起細胞內的反應而形成,雖然傷害的狀況很像灼傷,但其成因可能更複雜。

不同的蚯蚓對於紫外線的耐受力不同,從蚯蚓的爬行行為、體表的傷害到死亡率可以看出實驗中的三種蚯蚓,以A.gracilis對紫外線最為敏感,M.posthuma次之,P.corethrurus對紫外線的耐受性最佳。

以UV-A或UV-B照射蚯蚓後發現,UV-A不會造成任何種類蚯蚓的死亡,但A.gracilis和M.posthuma在照射UV-B後則會有個體死亡,顯示UV-B對蚯蚓致死的能力大於UV-A。

不同種類對UV-B的致死輻射量不同,可能包含了許多的生理意義,A.gracilis是三種實驗蚯蚓中體色最深的種類,色素是動物中常見用來保護體表組織的分子,但也有報告顯示,色素細胞中的chromophore在吸收過多紫外線下,會造成氧化壓力(oxidativestress)產生許多自由基(freeradical),反而造成細胞的傷害,我們在另外的研究中也證實A.gracils在照射UV-B後,體表會產生大量的脂質過氧化(lipidperoxidation)及氧化壓力的增加,而抗氧化酵素(anti-oxidant)則是會被紫外線破壞,所以紫外線造成的氧化壓力也是A.gracilis死亡的原因之一,有趣的問題是P.corethrurus幾乎沒有任何色素在其體表,但卻對紫外線有最大的耐受性,因此可能有一些未知的機制可以保護P.corethrurus。

source:CartoonADay參考資料ChuangSCandChenJH.2013.PhotooxidationandantioxidantresponsesintheearthwormAmynthasgracilisexposedtoenvironmentallevelsofultravioletBradiation.Comp.Biochem.Physiol.A.Mol.Integr.Physiol.164:429-437.ChuangSC,LaiWSandChenJH.2006.Influenceofultravioletradiationonselectedphysiologicalresponsesofearthworms.J.Exp.Biol.209:4304-4312本文轉載自作者部落格。

數感宇宙探索課程,現正募資中!相關標籤:太陽紫外線蚯蚓熱門標籤:大麻NASA女科學家量子力學CT值文章難易度剛好太難所有討論 0登入與大家一起討論活躍星系核755篇文章・ 88位粉絲+追蹤活躍星系核(activegalacticnucleus,AGN)是一類中央核區活動性很強的河外星系。

這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。

本帳號發表來自各方的投稿。

附有資料出處的科學好文,都歡迎你來投稿喔。

Email:[email protected]相關文章40年珊瑚之謎終於揭密——「滿月後的黑暗」是同步產卵的關鍵顛覆過去發現!中研院團隊首揭細胞「無合成分裂」登上《Nature》期刊你家也有焦慮的膽小狗嗎?實驗證明狗狗吃益生菌可以穩定情緒!口臭去去走!噴的口腔益生菌,強化口腔健康,壞菌走開!TRENDING熱門討論即時熱門為什麼吃甜的會蛀牙?——《生活中的東西都可以寫成化學式》119小時前比臭豆腐還臭!「臭」名昭彰的瑞典鹽醃鯡魚罐頭221小時前有施打mRNA疫苗,住院與死亡風險較低12天前沒有「引力」,只有「時空扭曲」——《高手相對論》32天前沒有「引力」,只有「時空扭曲」——《高手相對論》32天前兒童該打COVID-19疫苗嗎?(二)真實世界顯示,兒童疫苗防重症32022/04/29你家也有焦慮的膽小狗嗎?實驗證明狗狗吃益生菌可以穩定情緒!23天前疫苗分配平等:說起來容易做起來難——《輝瑞登月任務:拯救人類的疫苗研發計畫》22022/04/17010文字分享友善列印010動物世界環境生態生命奧祕科學傳播自然生態40年珊瑚之謎終於揭密——「滿月後的黑暗」是同步產卵的關鍵研之有物│中央研究院・2022/05/09・5967字・閱讀時間約12分鐘+追蹤本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

採訪撰文/林承勳、簡克志美術設計/林洵安、蔡宛潔解開40年珊瑚同步產卵謎團早在1980年代科學家就發現,珊瑚彼此之間很有默契,會在短時間內一起繁殖,附近水域瀰漫大量珊瑚卵,形成令人歎為觀止的壯麗畫面。

對於珊瑚同步產卵現象,過去學者推測是受到溫度、潮汐、光線等因素影響,但觸發產卵的關鍵原因一直都沒有被確認。

經過40年,在中央研究院生物多樣性研究中心團隊努力下,終於揭開秘密!中研院「研之有物」專訪野澤洋耕副研究員與林哲宏博士後研究員,他們發現珊瑚同步產卵的關鍵就在於日落到月昇的黑暗時間。

野澤洋耕的團隊在臺灣綠島進行長期觀察和研究,終於發現珊瑚同步產卵的關鍵因素。

珊瑚繁殖季(南臺灣約4-6月)滿月過後,日落到月昇之間的黑暗期觸發了珊瑚產卵的條件。

圖片為正在產卵的環菊珊瑚。

圖/林哲宏奇怪的知識增加了:原來珊瑚是一群型態差異相當大的動物!由於珊瑚只能附著在固定位置、無法移動,因此曾被誤認為是植物。

而且珊瑚的外觀又很容易誤導民眾,直覺認為一大株珊瑚就是一個生物體。

但事實上,大多數的珊瑚其實是一群珊瑚蟲的聚落;只有少數像蕈珊瑚科(Fungiidae)部分種類,才是一隻巨大珊瑚蟲為一株珊瑚個體。

以造礁珊瑚為例,珊瑚蟲聚落可分成非生物與生物兩個部分:成分為碳酸鈣的珊瑚石是保護殼和居所;覆蓋在珊瑚石上面的就是無數隻活跳跳的珊瑚蟲。

珊瑚蟲被分類在刺絲胞動物門,牠們外觀跟同門的海葵相似,有著圓筒身軀、一個開口,開口周圍分布數隻觸手,觸手上密布著刺絲胞,能捕撈浮游生物來吃。

珊瑚蟲另一種食物來源是由互利共生的蟲黃藻提供,蟲黃藻會行光合作用產生養分與氧氣,同時也為白色的珊瑚石、透明的珊瑚蟲帶來繽紛色彩。

造礁珊瑚(又稱石珊瑚)的珊瑚蟲聚落,最初都是從一隻珊瑚蟲開始,透過緩慢持續的生長過程,才逐漸長成我們看到的珊瑚礁。

圖/iStock在海裡看到大大小小的珊瑚,最初都是由一隻體積微小的珊瑚蟲,分裂再分裂而來,珊瑚蟲們不斷進行無性生殖,經年累月分裂出大量個體。

為數眾多的珊瑚蟲們世世代代分泌的碳酸鈣逐漸堆積,一直到如城堡般巨大,就形成所謂的「珊瑚礁」。

珊瑚礁被科學家們認為是海中的熱帶雨林,提供魚類、甲殼類等生物棲息地與豐富食物、能量。

中研院副研究員野澤洋耕認為,珊瑚是種非常神奇的生物,從原本微小到肉眼無法辨認的一隻珊瑚蟲個體,居然能不停分裂生殖,最後數以億計隻珊瑚蟲群聚成唯一能夠從外太空觀察到的地球生命:大堡礁。

只是,珊瑚蟲用分裂生殖新增的,是跟上一代基因、外形一模一樣的個體,這類無性生殖無法增加基因多樣性,還會讓族群失去面對環境變動的適應能力。

因此珊瑚必須要另外花費時間、能量排精產卵,行有性生殖製造具有嶄新基因的後代。

珊瑚可以透過無性生殖和有性生殖繁衍個體。

圖/研之有物(資料來源│GlobalFoundationforOceanExploration)珊瑚也懂投資?雞蛋分籃放與孤注一擲的產卵選擇不像魚類可以找到配偶後再產卵受精,固定不動的珊瑚只能直接把精卵釋放到海水中。

為了克服無法移動的劣勢,牠們會採取同步策略,約好在短時間內一起排出數量驚人的精卵。

如此一來就能大大提高精卵濃度來增加受精成功率,即使有掠食者在旁想趁機飽餐一頓,也會頓時眼花撩亂、顧此失彼。

人們眼中珊瑚產卵的美景,同時也是生物為了繁衍而克服大自然困境的努力。

珊瑚同步產卵還能再細分成兩種模式,野澤洋耕指出,珊瑚一年只產卵一次,有些種類偏好分散風險,群體內珊瑚同時產卵,各群體間則是彼此錯開,可能往前往後幾天;另外有些珊瑚則是孤注一擲,約好「全部」一起生。

相對來說後者受精機率當然更大,但當天要是碰到暴雨、颱風等天氣因素攪局,該年可能幾乎不會有後代成功生存。

「看起來風險很高,只是既然會演化出不同方法,就代表雙方各有優勢。

」野澤洋耕解釋地說。

但不管是謹慎還是賭性堅強的種類,無法移動、不能彼此溝通的珊瑚,到底是用什麼方法約好一起產卵?自從1980年同步產卵現象被發現後,這謎團足足讓世人困惑了40年之久。

七年田野調查資料顯示,關鍵因子藏在月週期裡從2010年開始,野澤洋耕的研究團隊每年都會在珊瑚繁殖季(南臺灣通常是四、五、六月),來到綠島潛水調查。

調查期間,團隊每晚下水記錄珊瑚種類、數量與排卵時間,在累積七年的調查資料後,博士後研究員林哲宏發現每一種珊瑚都有明顯的生殖模式。

根據研究團隊現有紀錄,隸屬於繩紋珊瑚科(Merulinidae)的珊瑚是採取分散風險策略,不同群體分批同步產卵。

雖然群體間產卵日子錯開,但時程非常固定,都是在「滿月」之後五到八天;綠島還有另一大宗珊瑚,是分在軸孔珊瑚屬(Acropora)下的一些種類,牠們是「全部」約好在同一天產卵,但到底是哪一天,每年觀察到的日期都不太一樣。

「繩紋珊瑚科就是固定在滿月後五到八天產卵;軸孔珊瑚屬也是在滿月後,但毫無規則可言。

」林哲宏說。

即使如此,兩者都是在滿月後產卵,研究團隊於是鎖定月週期的因子:月光,來進行檢驗。

繩紋珊瑚科vs軸孔珊瑚屬。

圖/研之有物(資料來源:Wikipedia、iStock)室內室外重複操作結果都顯示:夜間光源會抑制珊瑚產卵由於繩紋珊瑚科的環菊珊瑚(Dipsastraeaspeciosa)在綠島很常見,觀察、樣本取得都很容易,加上生殖時間又有跡可循,團隊就選擇該物種來進行實驗。

「將月光遮住後,環菊珊瑚就提早產卵了。

」野澤洋耕表示,初步實驗結果意味著滿月後的黑暗,就是通知珊瑚準備產卵的環境訊號。

環菊珊瑚隸屬於繩紋珊瑚科,群體間大量產卵通常發生在滿月之後五到八天。

圖/林哲宏為了避開其他環境因子干擾,實驗首先是在研究室的水缸中進行;接著團隊來到綠島北邊的公館附近,要確認珊瑚不論是在人工環境或自然棲地中,都會因為黑暗籠罩提前產卵。

「我們每天都下水,在滿月前三天、前一天,還有滿月後一天幫珊瑚蓋上不透光的鋁箔布或透明布。

」林哲宏說。

結果符合預期:珊瑚越早被蓋上黑布,就會越快產卵,很規律地在接收到黑暗訊號之後的五到八天大量產卵。

研究團隊在綠島設置實驗觀察環菊珊瑚產卵,人工控制在滿月前三天、前一天和後一天都不照月光,發現珊瑚越早蓋上布,就會越早觸發產卵時機。

圖/PNAS不同光譜的光源,都會有相同的抑制效果除了照光與否,林哲宏還加入光源光譜與密集度的試驗。

因為2006年刊登在《Science》期刊的一篇論文指出,珊瑚可能會偵測月光。

野澤洋耕提到,論文中說明珊瑚只要照到月光,體內的cry基因就會表現,而且cry基因對藍光特別有反應。

所以團隊再回到研究室內,用人工光源模擬月光強度,分別給予紅、藍、綠三種不同色光,想確認是否真的如文獻資料敘述,不同光譜光源會給珊瑚帶來不同程度的刺激。

但實驗證實,三種色光照下去,珊瑚都一樣不產卵。

也就是說,目前蒐集到的線索都指向:黑暗是珊瑚產卵的關鍵。

40年珊瑚之謎,謎底就是日昇與月落之間的黑暗時段經過一連串抽絲剝繭,終於確認夜間光線會抑制珊瑚產卵。

然而團隊想進一步了解,珊瑚於漫漫長夜中只要一瞬間照到光就會被干擾,還是要有多長曝光才能達到抑制效果。

因此團隊在實驗室環境中,個別探討了整晚黑暗、整晚照光、前半夜(日落到午夜)照光,還有下半夜(午夜到日出)照光等四種情形。

結果顯示,下半夜照光跟整晚保持黑暗的組別一樣,珊瑚在五天之後同步排卵;前半夜照光,效果與整晚照光相同,會讓珊瑚延遲生產且產卵同步率下降。

「看到這現象,我們推測珊瑚感應光線的受器應該有『營業時間』。

」林哲宏笑著說,受器營業時間大概是在日落後到午夜,不過不同珊瑚個體還是存在著些許差異。

答案終於揭曉:以環菊珊瑚來說,只要連續兩個夜晚,於日落後有一小時左右的黑暗時段,就達成同步產卵的要件。

這也解釋了珊瑚為什麼都挑在滿月後繁殖,林哲宏指出,因為地球自轉同時月球又繞地球轉的緣故,每天月球升起的時間會延遲約莫30-70分鐘[註1]。

對照繁殖季四月的月週期,月初時月球升起會落在下午兩點多,之後每天延遲直到滿月,月球才會於日落後升起,而中間的黑暗期就是在告訴珊瑚:可以準備生產了。

選在滿月後生產是有其優勢的,野澤洋耕提醒說,環菊珊瑚產卵適逢黑暗、小潮,昏暗的環境能稍微蒙蔽掠食者目光,加上小潮時海浪沒那麼強,精卵不至於馬上被沖散。

研究團隊經過長年自然觀察以及實驗條件的控制,終於找出珊瑚同步產卵的秘密,關鍵就在繁殖季的滿月日之後的黑暗期。

圖1顯示滿月日之前,月光會抑制珊瑚產卵,圖2顯示滿月日之後,日落月昇中間的黑暗期,觸發了珊瑚產卵的條件。

圖/PNAS收到「暗」示後,珊瑚卵需要五天催熟至於繩紋珊瑚科固定在滿月後五到八天產卵的微觀機制,研究團隊還在努力研究中,有可能與精、卵的成熟機制有關,以下是研究團隊針對觀察現象的推測。

繩紋珊瑚科是雌雄同體,珊瑚蟲體內先產生精子與尚未成熟的卵子,當珊瑚接收到連續兩天黑暗的刺激,卵子的細胞核就會逐漸往卵細胞邊緣移動。

整個過程稱作胚核遷移(germinalvesiclemigration,GVM),需要花費五天左右。

胚核遷移完成後,卵細胞核會開始瓦解,耗時約莫三到四個小時,稱作胚核破裂(germinalvesiclebreakdown,GVBD),此時卵細胞幾乎已經為受精做好準備。

接著,成熟的卵子與精子會被打包在一起,變成叫做「精卵束」的構造。

野澤洋耕提到,精卵束被珊瑚排出體外後,會一路浮到水面,畢竟精卵在二維的海面相遇機率要比在三維的水下空間來得大些。

精卵束在水面破裂,釋出的卵子只剩最後一個步驟:擠出細胞內的極體(polarbody),就可以跟精子結合了。

有趣的是,年輕的卵會優先跟不同珊瑚的精子結合;但時間一長,即使是同一個珊瑚的精子也會接受。

「不然再等下去,不是被沖散就是被吃掉,受精機會只會越來越渺茫。

」林哲宏補充地說。

成功受精後受精卵會沉到水裡,並發育成一隻具有纖毛、可以自由活動的實囊幼蟲。

實囊幼蟲會花好幾天在海底尋尋覓覓,待找到合適的地點,就附著、變態成為再也無法隨意移動的珊瑚蟲。

接著珊瑚蟲會不停地分裂、分泌碳酸鈣,長成一株株珊瑚。

野澤洋耕副研究員解釋目前正在研究中的珊瑚產卵微觀機制。

圖/研之有物奇妙機緣讓多年研究心血登上國際期刊「說起來實在幸運,原本稿子都投到其他期刊去了。

」論文第一作者林哲宏笑著說,前一陣子日本學者高橋俊一來臺灣訪問交流,意外讓這次珊瑚產卵新發現得以刊登在《美國國家科學院院刊》(PNAS)上。

琉球大學教授高橋俊一在中研院停留時,順道拜訪同鄉人野澤洋耕的研究室,閒聊之下發現兩人居然還是大學同學。

「大學時我們僅是點頭之交,畢業後再也沒有對方消息了。

」野澤洋耕表示,高橋俊一後來在琉球大學進行熱帶生物基因、分子領域研究;自己則是在中研院、綠島兩邊奔走,做珊瑚生態、行為調查,沒想到老同學會偶然在學術圈再度相遇。

在高橋俊一的建議之下,雙方合作將實驗擴展得更加完善。

林哲宏提到,高橋提供一些安排實驗、投稿期刊的秘訣,像是在實驗室內與自然環境中重複出相同結果,增加成果的說服力;撰寫論文時盡量保守,只寫已經確定的內容,不要節外生枝;還有花心思修飾文字段落安排,保持耐心與審查委員溝通等等。

巧妙的緣分促成臺日研究團隊跨國合作,也讓野澤洋耕與林哲宏等人多年來勤奮研究的成果有機會能夠被刊登在重量級期刊中,讓珊瑚產卵真相可以得到更多注意。

珊瑚產卵研究需要長時間投入,野澤洋耕副研究員(中)與林哲宏博士後研究員(右)團隊多年研究成果,終於刊登在美國國家科學院院刊(PNAS)。

圖/研之有物艱難的生態研究柳暗花明,組成跨國團隊再出發回想起當初因為潛水的興趣才選擇珊瑚當作研究主題,經過20多年後,野澤洋耕慢慢開始期待自己的研究,能為持續減少的珊瑚族群帶來些貢獻。

野澤洋耕提到:「很開心可以在這裡研究,中研院的支持讓我沒有後顧之憂。

」解開環菊珊瑚的同步產卵之謎後,林哲宏接下來要到現任老闆的老同學:高橋俊一在琉球大學的實驗室,展開新的珊瑚研究計畫。

而野澤洋耕表示,他還是會繼續協助林哲宏的博士後研究,因為這次主要聚焦在環菊珊瑚,他們還想知道同樣是繩紋珊瑚科的其他種類,是否也是因為黑暗刺激同步產卵;還有軸孔珊瑚滿月後不規律的產卵模式,以及缺乏光照反而不產卵的現象,背後是否有更多秘密。

另外值得一提的是,珊瑚產卵的成果發表後,野澤洋耕收到來自以色列巴伊蘭大學學者LevyOren的來信。

LevyOren是在紅海研究光害對於當地珊瑚族群的影響,他對這次刊登的研究內容非常感興趣,更期待有機會能合作。

原本珊瑚產卵的主題,因為一年只有一次觀察產卵機會,還要天天夜間潛水調查,風險之高、過程之辛苦,讓許多學者望之卻步。

如今野澤洋耕與林哲宏等人多年來的堅持有了回報,而且橫跨紅海、綠島、琉球三地的搶救珊瑚大冒險,就在前方等待著他們。

註解註1:因為月球繞地球轉的軌道不是正圓,因此每天月亮升起的延遲時間會依照月相時間(新月/滿月)和季節而有所變化,延遲時間大約從30-70分鐘不等。

延伸閱讀Lin,C.-H.,Takahashi,S.,Mulla,A.J.&Nozawa,Y.(2021). Moonrisetimingiskeyforsynchronizedspawningincoraldipsastraeaspeciosa. PNAS, 118(34).“CoralFacts.”NOAACoralReefConservationProgram.“HowDoCoralsReproduce?”GlobalFoundationforOceanExploration.“Whatarecorals?”NationalOceanService.數感宇宙探索課程,現正募資中!相關標籤:珊瑚珊瑚產卵珊瑚礁熱門標籤:大麻NASA女科學家量子力學CT值所有討論 0登入與大家一起討論研之有物│中央研究院85篇文章・ 569位粉絲+追蹤研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。

探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。

網頁:研之有物臉書:研之有物@FacebookRELATED相關文章40年珊瑚之謎終於揭密——「滿月後的黑暗」是同步產卵的關鍵顛覆過去發現!中研院團隊首揭細胞「無合成分裂」登上《Nature》期刊你家也有焦慮的膽小狗嗎?實驗證明狗狗吃益生菌可以穩定情緒!口臭去去走!噴的口腔益生菌,強化口腔健康,壞菌走開!TRENDING熱門討論即時熱門為什麼吃甜的會蛀牙?——《生活中的東西都可以寫成化學式》119小時前比臭豆腐還臭!「臭」名昭彰的瑞典鹽醃鯡魚罐頭221小時前有施打mRNA疫苗,住院與死亡風險較低12天前沒有「引力」,只有「時空扭曲」——《高手相對論》32天前沒有「引力」,只有「時空扭曲」——《高手相對論》32天前兒童該打COVID-19疫苗嗎?(二)真實世界顯示,兒童疫苗防重症32022/04/29你家也有焦慮的膽小狗嗎?實驗證明狗狗吃益生菌可以穩定情緒!23天前疫苗分配平等:說起來容易做起來難——《輝瑞登月任務:拯救人類的疫苗研發計畫》22022/04/17



請為這篇文章評分?