Best Python Packages (Tools) for Knowledge Graphs

文章推薦指數: 80 %
投票人數:10人

A Knowledge Graph is a reusable data layer that is used to answer sophisticated queries across multiple data silos. PlatformCoreMemgraphIn-memorygraphdatabaseforstreamingdata.TheMemgraphToolbox/EcosystemLabAuserinterfaceforgraphdatavisualization.MAGEAgrowingopen-sourcegraphalgorithmrepository.GQLAlchemyAnobjectgraphmapper(OGM)forPython.DownloadPlatformHowitworksCheckunderthehoodandgetaglimpseattheinnerworkingsofMemgraph.CloudUsecasesFrauddetectionAnalysethebehaviorofmultipleusersovertimetodetectanomaliesandfraud.RecommendationEngineCombinemultipledatasourcestorecommendproductsandservicestotherightpeopleattherighttime.ResourceandProcessOptimisationAnalysedatafromvariousdatasourcesinreal-timetoimproveproductivityandreducecosts.UniqueCaseNotsureMemgraphistherightfitforyourusecase?Setupacallandexplorelet’sexplorethepossibilitiestogether.ResourcesPlaygroundMastergraphalgorithmsinminutesthroughguidedlessonsandsandboxesonreal-worldproblemsinthebrowser.CommunityJoinagrowingcommunityofgraphdevelopersanddatascientistsbuildinggraphbasedapps.BlogAsblogsdo.DiveintoMemgraphtopics.CodewithBudaWatchMemgraph’sCTOdemonstratethepowerofgraphs.EmailcoursesUpgradeyourCypherorGraphModellingskillsinweeklybite-sized lessons.DocsPricingFreeDownloadCheckoutthenewPythonObjectGraphMapper(OGM)libraryGQLAlchemyCategoriesPythonBestPythonPackages(Tools)forKnowledgeGraphsDeepTechFlaskGQLAlchemyGraphstreamingwithPythonJupyterNotebookMemgraphMAGENetworkXPythonProductTutorialsGraphStreamingPythonCompanyPython/BestPythonPackages(Tools)forKnowledgeGraphsbyMemgraphMay23,2022AKnowledgeGraphisareusabledatalayerthatisusedtoanswersophisticatedqueriesacrossmultipledatasilos.Withcontextualizeddatadisplayedandorganizedintheformoftablesandgraphs,theyachievepinnacleconnectivity.Theycanquicklyacceptnewinformation,classifications,andcriteriasincetheyweredesignedtocapturetheever-changingnatureofthedata.TherearedifferentlibrariesforperformingknowledgegraphsinPython.Let’scheckoutafewofthem. PythonPackagesforKnowledgeGraphs 1.Pykg2vec Pykg2vecisaPythonpackagethatimplementsknowledgegraphembeddingalgorithmsandflexibleembeddingpipelinebuildingelements.Thislibraryseekstoassistacademicsandprogrammersinfasttestingalgorithmswiththeirknowledgebase,oradaptingthepackagefortheiralgorithmsusingmodularblocks. Pykg2vecwasbuiltusingTensorFlow,butbecausemoreauthorsutilizedPytorchtocreatetheirKGEmodels,itwasswitchedwithPytorch.TheTFversionisstillavailableinthetf2-masterbranch.Inadditiontotheprimarymodeltrainingprocedure,pykg2vecusesmulti-processingtogeneratemini-batchesandconductanassessmenttominimizetheoverallcompletiontime. Features Bayesianhyperparameteroptimization Inspectiontechniquesforthelearnedembeddings Supportcutting-edgeKGEmodelvariantsaswellasevaluationdatasets AllowfortheexportoflearnedembeddingsinTSVorPandas-compatibleformats KPIoverviewvisualizationdependingonTSNE(meanrank,hitratio)inmultipleformats Benefits Interactivevisualizations Personalizeddatasets 2.PyKEEN PyKEEN(PythonKnowledgeEmbeddings)isaPythonlibrarythatbuildsandevaluatesknowledgegraphsandembeddingmodels.InPyKEEN1.0,wecanestimatetheaggregationmeasuresdirectlyforallfrequentrankcategories.Suchasmean,optimistic,andpessimistic,allowingcomparisonoftheirdifferences. Itcanidentifyinstanceswherethemodelpreciselyforecastsidenticalscoresforvarioustriples,whichistypicallyundesirablebehavior.ThePyTorchmoduleisusedtoimplementitforPython3.7+.ItincludesasetofcomprehensivetestingprocessesperformedwithPyTestandTox.YoucanexecuteinTravis-continuousCI’sintegrationenvironment. Features TrainingApproaches:LCWAandsLCWA UniformandBernoullinegativesamplers Optimizationofhyper-parametersusingoptuna Earlystopping Evaluationmetrics:adjustedmeanrank,meanrank,ROC-AUCscore Benefits Itistheonlylibrarythatusesautomaticmemoryoptimizationtoverifythatmemorylimitsarenotsurpassedduringtestingandtraining. Userscanreplicateandmaintaingraphsduetoseveralcommunity-driventools. 3.AmpliGraph Knowledgegraphembeddingscanbeusedforvarioustasks,includingknowledgegraphcompletion,informationretrieval,andlink-basedcategorization,tonameafew.AmpliGraphisthefirstopen-sourcetoolkittodemocratizegraphrepresentationlearning,allowingfordiscoveringwholenewknowledgefromexistinggraphs. TheAmpliGraphpackageincludesmachinelearningmodelsthatcangenerateknowledgegraphembeddings(KGEs),low-levelvectorrepresentationsoftheitems,andrelationshipsthatmakeupaknowledgegraph. Thesemodelsuselow-dimensionalvectorstoencodenodesandrelationshipsofagraph.Asaresult,subsequentsystemsthatdependonthosegraphs,suchasquestion-answeringsoftware,improveefficiency. Itreducestheentrybarriersforknowledgegraphembeddings,makingsuchmodelsavailabletoeventhemostunskilledusersandestablishingacommunityofprofessionalswhocanbenefitfromthefreewareAPIforlearningonknowledgegraphs. Features Customization:YoucanenhanceAmpliGraph-basedestimatorstocreateyourcustomknowledgegraphembeddingsframework. Support:ItcanrunonbothCPUsandGPUstoacceleratethetrainingprocedure. LessCode:ItsAPIscutdownonthecodeneededtoanticipatecodeinknowledgegraphs. Benefits OpenSourceAPI Itcanpredictthemissingrelationshipsbetweengraphs. Thecurationofgraphsproducedautomaticallyfromtext,whicharetypicallymessyandimprecise,isalsoconsiderablyimprovedbylinkprediction. 4.LibKGE LibKGE’sprimarypurposeistopromoterepeatablestudyintoKGEmodelsandtrainingtechniques.Thetrainingapproachandhyperparametersselectedsignificantlyimpactsimulationresultsthanthemodelclassalone. ThegoalofLibKGEistoprovidesimpletraining,hyperparameteroptimization,andassessmentproceduresthatcanbeusedwithanymodel.Everypossibleknoborheuristicintheplatformisavailableexplicitlythroughwell-documentedconfigurationfiles.ThemostcommonKGEmodelsareincludedinLibKGE,andyoucanintroducenewmodels.Athoroughloggingmechanismandequipmentfacilitatein-depthexamination. Features Earlytermination Checkpointing Highparallelismpotential Youcanpauseandrestartatanymoment Withorwithoutmutualinteractions,allmodelscanbeemployed. AutomatedMemorymanagementforhugebatchsizes Benefits LIBKGEiswell-structured.Individualmodulescanbecombinedandmatched,andadditionalcomponentscanbeincorporatedquickly. Thepresentconfigurationofthetestissavedalongsidethemodeltoincreaseevaluationandconsistency. Duringtests,LIBKGElogsalotofdataandkeepstrackofperformancemeasureslikeruntime,memoryutilization,trainingattrition,andevaluationmethods. 5.GraphVite ThemainlibraryandthePythonwrappercomprisetheGraphViteplatform.Pythonwrapperenablesautomaticpackagingproceduresforcorelibraryclasses.Italsoprovidesanimplementationfordatasetsandvariousapplications. ThecorelibraryiswritteninC+11andCUDA,andpybind11isusedtolinkittoPython.ItencompassesallGraphVite’scalculation-relatedclasses,suchasgraphs,analyzers,andoptimizationalgorithms.DeveloperscanbundleallofthesecomponentsintoclassesthatresemblePythoninterfaces. ThearchitectureallowsdynamicdatatypesinthePythoninterfaceandoptimizescompiletimeforoptimalefficiency.Italsoincludesninemajormodelsandtheircomparisonstostandarddatasets.UserscanquicklypracticecomplicatedgraphicsembeddingmethodsandgetresultsinashortamountoftimeusingthePythoninterface.Userscanutilizethecoreinterfacetodevelopvisualdeeplearningmethodswithoutworryingaboutscheduling. Features Nodeembedding KnowledgeGraphembedding High-dimensionaldatavisualization Replicationoflearningalgorithmonaunifiedplatform Benefits Highspeed Youcanlearnfromlargescalegraphs Visualizechartsorhigh-dimensionalinformationeffectively Enhanceworkingprototypeandmodelmodificationeffectiveness ShareBlog SignupforourNewsletterGetthelatestarticlesonallthingsgraphdatabases,algorithms,andMemgraphupdatesdeliveredstraighttoyourinbox TableofContentsShareBlog SignupforourNewsletterGetthelatestarticlesonallthingsgraphdatabases,algorithms,andMemgraphupdatesdeliveredstraighttoyourinbox ContinueReadingWedon'thaveanythingrelatedtothisarticle,butcheckoutourblog.SubscribetoournewsletterStayuptodatewithproductupdates,tips,tricksandindustryrelatednews.Thankyou!Yoursubmissionhasbeenreceived!Oops!Somethingwentwrongwhilesubmittingtheform.



請為這篇文章評分?