An investigation into the deep learning approach in ... - PLOS
文章推薦指數: 80 %
Sentiment analysis is a branch of natural language analytics that aims ... deep learning approach in sentimental analysis using graph-based ...
BrowseSubjectAreas
?
ClickthroughthePLOStaxonomytofindarticlesinyourfield.
FormoreinformationaboutPLOSSubjectAreas,click
here.
Article
Authors
Metrics
Comments
MediaCoverage
ReaderComments
Figures
Figures
AbstractSentimentanalysisisabranchofnaturallanguageanalyticsthataimstocorrelatewhatisexpressedwhichcomesnormallywithinunstructuredformatwithwhatisbelievedandlearnt.Severalattemptshavetriedtoaddressthisgap(i.e.,NaiveBayes,RNN,LSTM,wordembedding,etc.),eventhoughthedeeplearningmodelsachievedhighperformance,theirgenerativeprocessremainsa“black-box”andnotfullydisclosedduetothehighdimensionalfeatureandthenon-deterministicweightsassignment.Meanwhile,graphsarebecomingmorepopularwhenmodelingcomplexsystemswhilebeingtraceableandunderstood.Here,werevealthatagoodtrade-offtransparencyandefficiencycouldbeachievedwithaDeepNeuralNetworkbyexploringtheCreditAssignmentPathstheory.Tothisend,weproposeanovelalgorithmwhichalleviatesthefeatures’extractionmechanismandattributesanimportancelevelofselectedneuronsbyapplyingadeterministicedge/nodeembeddingswithattentionscoresontheinputunitandbackwardpathrespectively.WeexperimentontheTwitterHealthNewsdatasetwerethemodelhasbeenextendedtoapproachdifferentapproximations(tweet/aspectandtweets’sourcelevels,frequency,polarity/subjectivity),itwasalsotransparentandtraceable.Moreover,resultsofcomparingwithfourrecentmodelsonsamedatacorpusfortweetsanalysisshowedarapidconvergencewithanoverallaccuracyof≈83%and94%ofcorrectlyidentifiedtruepositivesentiments.Therefore,weightscanbeideallyassignedtospecificactivefeaturesbyfollowingtheproposedmethod.Asoppositetoothercomparedworks,theinferredfeaturesareconditionedthroughtheusers’preferences(i.e.,frequencydegree)andviatheactivation’sderivatives(i.e.,rejectfeatureifnotscored).FuturedirectionwilladdresstheinductiveaspectofgraphembeddingstoincludedynamicgraphstructuresandexpandthemodelresiliencybyconsideringotherdatasetslikeSemEvaltask7,covid-19tweets,etc.
Citation:KentourM,LuJ(2021)Aninvestigationintothedeeplearningapproachinsentimentalanalysisusinggraph-basedtheories.PLoSONE16(12):
e0260761.
https://doi.org/10.1371/journal.pone.0260761Editor:ThippaReddyGadekallu,VelloreInstituteofTechnology:VITUniversity,INDIAReceived:May7,2021;Accepted:November16,2021;Published:December2,2021Copyright:©2021Kentour,Lu.ThisisanopenaccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalauthorandsourcearecredited.DataAvailability:AllHealthNewsinTwitterDataSetfilesareavailablefromtheUCIMachineLearningrepositorydatabase(Indexof/ml/machine-learning-databases/00438),URL:https://archive.ics.uci.edu/ml/datasets/Health+News+in+Twitter.Funding:Theauthor(s)receivednospecificfundingforthiswork.Competinginterests:Theauthorshavedeclaredthatnocompetinginterestsexist.
IntroductionDuetothetremendouscoveringandstandardizationofsocialmediaandInternetofThingsonourdailylife[1,2]peoplefeelmoreconfidenttoconsiderthisdigitalconnectedworldasanewcommunicationtool.ResearchinMachineLearning(ML)haswidelyaddresseddifferentwaystoassesspeople’sthoughtsandretrievemeaningfulcorrelationstobestquantifythem,thisisknownasSentimentAnalysis(SA).Thelatterhasrevolutionizedseveraldomainsbyconsideringusers’understandingandfeedbackaboutspecifictopicstoimprovetheirtrustworthinessandthereforebenefitsbusinesses[3],thisincludes:
Business:assessingcustomers’voices[4],marketresearchandanalytics[5](e.g.,e-business),reputationmanagement[6],etc.
Technology:Recommendationsystems[7],robots’adaptation[8],assessingastronauts’mentalhealth[9],etc.
Socialactions:Realworldevents’monitoring,smarttransport/cities[10],socialmediamonitoring(i.e.,racismdetection[11,12]),etc.
Politic:peacefulgovernmentsolutions[13],clarifyingpoliticians’positions,opinionsinversionprediction[14],etc.
Healthcare:approachingpeoplefromdifferentbackground/racesbyextractingcommonfeedbacksandcorrelations[15],retrievinginsightsinordertoimprovetreatments(e.g.,breastcancertreatmentexperience[16],braindata[17]hasbeenextractedtoinfercorrelationsamongnaïvespeakers,etc).
MostoftheseworksperceivedSAasaclassificationtask(e.g.,SupportVectorMachine(SVM)[18],NaïveBayes(NB)[19],biasimpactonML[20],etc.).Inthissense,recentworkshaveshownpromisingoutcomesbyboostingtheperformanceofthesealgorithms.In[21],afeatureselectionmechanismhasbeenproposedandoutperformssomeclassicalselectiontechniques(e.g.,Term-frequency,Chi-square,etc.)byprovidingmorecontexttothefeature’ssizereductionratherthanfrequency(i.e.,dataspread,outputcorrelation,etc.).
Despitesomepromisingclassifiers(e.g.,NBwith94.02%accuracy[22],SVMandNBwith90%and95%respectively[23],etc.)inthedomainslikehealthcareforinstance,itisknownthatdata(e.g.,Functionalrehabilitation)arehighlycorrelated[24]andnotequallydistributed[25].ThoselatterexclusionsrequiremorebetteranalyticframeworksthatmergesbothcomputationalpowerandacoveringknowledgeinordertoadjusttheSAtothemedicalfield.Inthissense,graphgenerationtechniquesareknownfortheirexpressivenessanddeepdataprocessing[26]whichgaveawaytoarecentanalysistechnologyknownasgraphembedding[27].ThelattertechniquehasbeensubjecttomanyMLimprovements(e.g.,reducinginputsizeandfeatureselectionforanaccuratetextclassification[22,23],etc.).
LatesteffortsonDeepLearning(DL)havebeenshowinggoodfunctionapproximationsratherthantraditionalMLones[28]byusingadditionalcomponents(i.e.,thresholds,weights,activationfunctions,etc.);however,SAforhealthcareimpliesadeepinvestigationatseverallevels,thatwasjustifiedin[29]byusinganaccompaniedtextinvestigationalongwiththeConvolutionalNeuralNetwork(CNN)algorithm,whichmeansDLstilllacksanextensiblefeaturelearningmechanismtobestanswertheSAprocessasadvocated.Inthiswork,weinvestigateanewdeepneuralnetworkmethodforSAwhichbetterapproximatesthedifferentaspectsofSA(i.e.,polarity,subjectivity,frequencyofterms/tweetswithintext,etc.),thiscontributionistwo-fold:1)improvingthefeedforwardpathbyproposinganembeddingstrategyfortheinputunitwhichreducesthedatatrainingcomplexitywithinalow-dimensionalspace.2)increasingthebackwardpath’sprecisionbyscoringthefeaturesfollowingtheirimportance(i.e.,highfrequency,betteractivationfunctionapproximation,etc.),whichguaranteesarapidlearningsurgewithagoodperformance(i.e.,highaccuracy,F-score,etc.).Furthermore,themodelhasbeenshowntobetransparentandefficient.
Theremainderofthispaperisorganizedasfollows:Section2liststheresearchquestionsandasetofrespectivehypotheseswhichemphasizethedevelopedaspectsofthisresearch.Ouraimsandobjectivesaredetailedinsection3.Section4presentstheliteraturereviewandthetheoreticalaspectofthisresearch.Whereas,ourproposedmethodsarepresentedinsection5,thisisfollowedbyanexperimentalstudyinsection6.Weevaluateourmodelinsection7,andthenwecriticallydiscussedthewholeworkinsection8.Section9concludesthepaperandgivesfewperspectives.
MotivationThemechanismoftheactualDeepNeuralNetwork(DNN)hasbeenofficiallyproposedby[30]asasupervisedMulti-LayerPerceptron(MLP).Toourbestknowledge,thesameauthorswerethefirstintroducersofDNNstransparencybytrainingeachlayerindependentlyandlearningtheircorrelatedrepresentations.Thiswasafeed-forwardmodelofmultiplelayers(calledconnectedcomponents)ofnon-linearactivationfunctions.However,thetheoryoftheinput’sinfluenceontheoutputperformancewithinneuralnetworkswasdiscussedfewyearsbeforeby[31]knownastheproblemofCreditAssignmentPaths(CAPs).ThelatterconsistsofdecidingwhichDNNcomponentsareinfluencingthemodelperformance.Whilethisproblemcouldbeaddressedinadifferentmanner,similarworksagreedonthefinalperformanceasthemaincriteriatojustifythemodel’sefficiency.In[32],authorshavebeeninvestigatingthestabilityofDNN(i.e.,multidirectionalLSTM)componentsmodelledasagridasawaytostopDLmodelvanishingproblem.Althoughauthorsin[32]haveachievedstate-of-the-artperformance,thecomplexityoftheinputspaceandthestateactivationlayerin[32]remainsanissueifdeployedwithlimitedresources.
Nowadays,withtheemergenceofNeuroscienceandartificialneuralnetworks[33],CAPsarenotonlylimitedtoacertainlayer.Moreover,back-propagationstrategy[34]remainsinefficientincertainvanishingoroverfittingproblems,whicharemorelikelytooccurduetotheequalconsiderationoftheinputsamples(see[21]).
AsSAbecamepopularformanyDLapplications,thelackoftransparencyindecisionmakingwithinspecializeddomainslikemedicine[35]isquitemisleadingandsomepracticesmayopposetotheGeneralDataProtection(GDPR).Toourbestknowledge,CAPshasnotyetbeeninvestigatedinthisresearchareawhereasitwastheoriginofDLtransparencyasstatedbefore.Therefore,bythisresearch,weaimtoinvestigateCAPstheoryforatransparentDNNstructurethatbestanswerstheSA.IncontrasttotheDLmodelsfromliterature,wewanttokeepthecomplexity(i.e.,special/temporal,see“Complexityanalysis”)asloweraspossible,andthiswillbedonebyactingonthebuildingcyclesofaDNN(i.e.,feedforwardandbackwardpaths)whilerestrictingtheinputfeaturesinalowerspacerepresentationandthenscoringthederivativeinstanceswithaselectionmechanismrespectively.
ResearchquestionsandhypothesesInordertobestunderstandtheproposedresearchinvestigationaswellastheobjectivemethod,thefollowingquestionslistedinTable1aimtoframethisresearchintotherightcontext.Asetofhypotheseshavebeenproposedfollowedeachresearchquestion.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageTable1.Theproposedresearchandthefollowinghypotheses.
https://doi.org/10.1371/journal.pone.0260761.t001
AimsandobjectivesOnlyfewattemptshavetriedtoassociategraphtechnologiestothedeepsentimentanalysisprocess[37,38].TheaimoftheproposedmethodistostudytheinfluenceoftheinputnodesandhiddenlayersonthefinalDNNsoutputs,insuchway,gettingtherightsamplefeatureswillhelptoreducethefeaturesvectorspacewhilekeepingthemodelrationality.Thiswasinspiredfromtheattentionmechanism[39]alongwithdeployingthedeepneuralarchitecture.Thestudywillfocusonpeople’stweets,thegoalistoenrichtheDNNstructurewithgraphembeddinglearning[27],whichwillberefinedthroughaselectivestrategy.ThefollowingFig1associateseachproposedresearchquestionwiththeenvisagedaimsandobjectivesrespectively.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig1.Theproposedaimsandobjectives.
https://doi.org/10.1371/journal.pone.0260761.g001AsshowninFig1,weaimforeachresearchquestiontobeansweredfollowingtheassociatedobjectives,andthatforthefollowingpurpose:
AnsweringthatquestionwillhelptoemphasizetheincreasingtrendtowardexplainableDLandthedifferentapproaches(see“TransparencyinDL”).
ExpendingthisquestionallowstofigureoutaconvenientwaytoabstractagivenDLproblemwhilebeingrationaltotheinternalstructure(see“Abstractionstrategy”).
Byexploringthisquestion,mostrecentGNNshavebeenreviewedandthemainobstacleformakingthemunderstandablewashighlighted(see“Graphbasedneuralnetworks”).
ThisquestionwillhelptorevealapartitioningmethodthatpermitstoidentifytheDNNsunitconcernedbytheproposedmethod(see“Methods”)andthathasimpactonthewholeperformance.
ThisquestionwillmotivatethemostrecentattentionalmechanismwithinSAandthewaytomergethatwithgraphembeddingsmethods(see“DLapplicationsonSA”).
LiteraturereviewInthissection,wereviewmostrecentapplicationsofDLonSAandtheirperformance.Then,weaddressexplanabilitywithinDLbyemphasizingrecentgraph-basedlearningmodels.
Researchstrategy
ThefollowingstrategydenotesthemainresourcesandthedataextractionschemewhichallowsagoodreflectionofthemultidimensionalitytopicofDNNswithrespecttotheSAfield.Thisisfollowedbyanevolutionchronologyandacarefulcombinationofthetopics’components(CAPs,graphs,SA,DL)whichtogethermotivatetheproposedmethod.
Literatureresources.IEEXplore,ScienceDirectandSpringerresearchdatabaseswereinvokedinordertoretrievepapersfromjournalswhichrefertoexplainableDL,journalpapersreferringtoSAhavebeenreviewedfromPubMeddatabase,thishasbeenrefinedtoincludeworksbasedonDLinparticular.ThecontextandkeywordsrelatedtoeachdatabaseaswellastheselectionresultsareillustratedinFigs2and3respectively,whereasthefollowingdiagramsummarizestheselectionstrategy(Fig4).
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig2.Researchdatabasesandkeywords.
https://doi.org/10.1371/journal.pone.0260761.g002
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig3.Releasedpapersforeachdatabasecorrespondingtoeachrelatedsubject.
https://doi.org/10.1371/journal.pone.0260761.g003
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig4.Journalpapersselectionmethod.
https://doi.org/10.1371/journal.pone.0260761.g004
Subjectevolution.CAPsandexplainableDL.CAPsisahistoricalproblem[40]whichexplorescausalpathsstartingfromadjustinginput’sweightstoanoptimaloutput.ThemajorityofworksongraphexplainableDLhaveaddressedCAPsproblemfromspecificangles,usuallyreferredtoas“modelspecific”[41];however,onlyfewattemptshavetriedtopositionaDNNasacompositionalunit[42]andthebestwaytoassigninputvalueswhichreferstothehistoricCAPs.AsshowninFig5,CAPsisgainingmoreandmoreattentionduringlastyears,aswellaspublishedpaperswithareferencetoexplainableDL(XDL)andCAPs.Mostofthemwerebio-inspiredwhichtreatcreditsaselectricsignalscomingfromexternalsensors,knownas“cause-affect”strategy.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig5.PublishedpapersreferringtoCAPsandexplainableDLwithreferencetoCAPs.
https://doi.org/10.1371/journal.pone.0260761.g005GraphsandCAPs.Asstatedbefore,researchonCAPshasbegunasawaytoassigncreditstobetterminimizetheerrorfunction[42].Fig6illustratesnewcategorizationofCAPs’approachesbasedonneuronpaths’detection.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig6.RecentapproachesforDNNscreditassignment.
https://doi.org/10.1371/journal.pone.0260761.g006ThemainquestionwhichwaspreventingCAPsfrombeingwidelyexploredasanefficientperformanceparameterwas“whetherthebrainbackpropagatesornot”;inthissense,graphshavebeensubjectofresearchinordertorepresenttherelevancebetweendatapatterns[43],RNNshavebeenfirstlyproposedtodealwithbackpropagation,thenLSTMs[44,45]andSlicedRNNs(SRNNs)[46]foraconstantvanishingpreventionandlongtermdependenciesrespectively.
AsshownbyFig7,newmodelsbecamepopular,they’reallcharacterizedbytheirgraphicnaturewhichnotonlytrytosolvealearningproblem,buttolearnhowtheresolutionisinferred[47].StochasticlearningGraphs(SGs)[48]forinstanceintroducesnewgradientsettingtobestreducetheloss.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig7.DNNsmodelsdistributionoveryearsasagraphbasedsolutiontoCAPs.
https://doi.org/10.1371/journal.pone.0260761.g007Moreover,GenerativeAdversarialNetworks(GANs)havebeenprovingtheirefficiencyintransferablelearningbyrevealinggenericanalysispatterns[49].However,large“discrete”graphs(e.g.,Multi-hiddenDNN)duetodiscreteindependentweights.Furthermore,AttentionlayershaveextendedDNNstructure[39](AGs)withanimportancedegreeofnodesorlinkswhichalleviatethediscretelearningtobeinductivewithlesscomputation(i.e.,withoutmatrix-factorization).
ReinforcementLearning(RL)wasthemosttargetedmodelwhiledealingwithCAPs,becausethewayneurons’weightsareupdated(byassigningafinalweighttoacertainneuron)isverysimilartotheconceptoffailure/rewardwithinRLfollowedbyseekinganexplanationfortheresult.
Sentimentanalysis
SAhasbecomingabasic-blockunitformanymodernplatforms;itsevolutionhasseenvariouschangesandappellations[50]alongwiththetechnologyandanalyticsusedfortheanalysis.Fig8representsaprogressbarofSAaccordingtoneuralnetworksevolution.DLhasrevolutionizedthewaySAisconducted,startingfromasingleperceptronthatonlysupportsalimitnumberofweightsandbias,toarelativelybetterapproximationoffunctionswithMulti-LayerPerceptron(MLP)andtheintroductionofback-propagationalgorithm.Bymid90s,SAbecameverypopularbytheintroductionofkernelfunctionsandHuman-interfacemachinesknownas“BrainComputerInterface”.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig8.BriefchronologyofSAfollowingthedevelopmentofDL.
https://doi.org/10.1371/journal.pone.0260761.g008AscertainadmitthatemotiondetectionisthefuturetrendofSA[51],thelatterisstilldominatingthefieldofmedicineandpsychologywhereDLisplayingakeyroleontransformingpeople’sentimentsintocomputationalaspects.
SentimentanalysisthroughCAPs.AsmodernSAprocessmayimplydealingwithlongtextframesandguaranteeinnerorouterdocumentdependency,thiswillinitiallyrefertoassigningcertaindocumentstopre-trainingstage;therefore,itcanbesubjectofCAPsinordertofigureouttherightparameters.Forourknowledge,thelatterproblemhasnotbeenaddressedfromaCAPsviewpointyet;However,asshownbyFig9,itwasremarkablyshownasimilarinterestonbothgraphembeddingandattentionmechanismswhichreflecttheeffectivenessofgraphsinthoseresearchareasintermsofselectivelyhighlightingtheactivesetofneuronswhichcanbeoptimizedandtheoneswhichmayimpactthepredictedsentimentinbothCAPsandSArespectively.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig9.Similarresearchaddressing“SA”and“CAPs”relativetographtechnologiesbetween2000–2021(basedonthepreviousanalysis(Fig7),graphshavebeengettingmoreattentionbyyear2000).
https://doi.org/10.1371/journal.pone.0260761.g009
DLapplicationsonSA.SA[52]hasprovenitsabilitytoretrievehuman’sfeelingsfromseveralconfusingtexts.However,longtermdependencyisoneoftheDNNs’applicationlimitsonSA,whichconsistsofpreservingatraceableexecutionofthemodel[53].Asapossibleanswertothefirstpartof“Researchquestions”(RQ5),recentmodelsfromtheliterature(Table2)triedtoaddressthatissuebyhybridizingsomemodels,likeLSTMwithGCN[38]forinstance;however,amechanismthatdetectsimportantpatternsismuchmoreneededwithsourcevariantdatasets,notonlyforimprovingaccuracy,butforthelearningvisibility.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageTable2.WorksonDLforSA.
https://doi.org/10.1371/journal.pone.0260761.t002
TransparencyinDL.TherehasbeenalotofresearchaboutclarifyingDNNsandwhetherunderstandingtheinternalconnectionofneuronscouldimprovethemodelperformance[69].ImagingisoneoftheemergingfieldsinDL,themajorityofworkstriedtoexplainimagingsystemsfromspecificproblems[70,71].However,languageprocessingaccompaniedwiththeavailabilityoflargetextdatasetbecamecentreofinteresttomanyresearchers,oneremarkableworkwasdoneby[72]forhugetextcorpusexplanation;althoughtheimagingsystemismoreclarifiedandflexible,thewaythegraphwasgenerateddoesn’tbenefitfromgraph-basedtechnologiesthatoptimizetheinputstartingfromnaivegeneration.
Overall,explanabilityinDLcanbecategorizedinto:
Example-basedapproaches;researchinthisareaisalwaysconductedthroughatraining-example,byspecifyingsomeinitialobservationswhichwillbeverifiedthroughfeatures’extraction,thisdisciplineiswidelyadapteddespitethedifficultyofverifyingthetrustworthinessofeachexample,thiscovers:
✓Gradientmethods(e.g.,Guided-backpropagation,Layer-wiserelevancepropagation[72]),whichaimtoabettergradientoptimization.
✓Saliency-featuremap[73]formeasuringpatternimportancewithinimagesandvideos.
Model-basedapproaches,whichconcentrateontherawdata,they’reusuallyreferredtoasinputoptimizers.Somerecentworksincludethepre-processingstageofDARPA[74]wheretheexplainableinterfaceisbuiltonusers’psychologicalaspect.[75]haveexploredthefusionalaspectofDNNswhichaimsto“mimic”afunctionaggregatorusingfuzzynetwork,etc.
Graphbasedneuralnetworks.Graphsareplayingacrucialroleinprocessingdataandpreservingtheirsemantics[76].TheideaofcombininggraphtechnologiesandDLisnotrecent[77].Asaproofofthat,manygraphmanipulationshavebeenintroduced:graph-pooling[78],graph-attentionnetworks[39],etc.
However,fewattemptshavecoupledlabelledgraphgenerationwithadeeplearningmodelapartfromtheactivationfunction,whichmakesthemextremelyhardtoexplainortointerpret.Fig10comparesfewrecentworksongraphexplainableDL.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig10.Overallcomparisonofpredictiveaccuracy.EVCT[72]:ExplainableandVisualizingCNNfortextinformation.XGNN[73]:ExplainableGraphNeuralNetwork.STC-PG[75]:SpatialTemporalandCausal-ParseGraph.KGCN[76]:Graph-basedConvolutionalNetworkforchemicalstructure.HAGERec[77]:HierarchicalAttentionGraphConvolutionalNetworkIncorporatingKnowledgeGraphforExplainableRecommendation.
https://doi.org/10.1371/journal.pone.0260761.g010Themainobstacleofabstractingeverysingleunitofadeepneuralnetwork(see“Abstractionstrategy”)asagraphstructureisthenon-compliancewithback-propagationprocess.Theworkdoneby[75]isaproofofthatwheretheyhadtocreateafunctionaggregatorthatsimulatesthetrueChoquet-integralmechanism,becausegraphscouldbeencodedasadjency-matrixforthebest;andthatdoesnotfitwiththeback-propagatorasafunctionoptimizer.AsananswertoResearchquestions(RQ3),weinvestigaterecentefforts(Fig10)andwithinthebelowsub-section,inordertoretrievecertainlimitsonGNNsandmotivateamodel-basedapproachontheinputunitoftheDNN.
Analysisanddiscussionongraph-basedSA.Theconductedevaluationillustratedby(Fig11)depictsmostDLstructuresandtheirvariationsintermsofaccuracyfollowingeachanalysislevel(see11).Whenconsideringdocumentsasawhole,LSTM-basedapproacheswerecrucialandshowedgoodperformancetocaptureinter/intradocuments’correlations.However,aslongaswemovefurtherfromsentence-basedtoasingleaspectlevel,thereismuchinterestonaspectsembeddingwithattentionnetworks,thelatterwereabletogatherneighbourhoodcontextforbettersentimentclassification.Thatcouldbenoticedinarecentmulti-modaltrends’analysis[67],whereRNNandLSTMfailtocaptureemotions’boundaryforthewholevideowhileAttention-basedCNNshowedgoodperformance(seeTable2).
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig11.MostusedDLmodelsinSAandtheiraccuracy.
https://doi.org/10.1371/journal.pone.0260761.g011Thefollowingnotesexpressfewlimitsofrecentworksonthisarea:
GNNs(e.g.,Graphattentionnetworks,Attentiongraphs,Stochasticgraphs)(Fig7)arewidelyconsideredintheareaofconnecteddata,butlargelabelledgraphsstillrepresentanissueduetotheirexponentialgrowth,thereforemovingfromhighdimensionalitytolowspacerepresentationisconditionedbybeingdiscriminativetotherawdataparameters.
TransferablelearningwhichconsistsofgeneralizingtheDLmodelfromaspecificobservationtootherdomainsstillanissuetomanyDLmodels,becausetheyarebuiltonaspecificdataset(s).However,asjustifiedby[79,80]afurtherapproachcouldbeperformedbysettingupaninputmechanismthatmapthecomplexityofrawdatatosmallerframeswhilebeingexpressive.
Highdimensionalfeatureanalysisremainsanissueformostdependency-basedmodels(LSTM[80],GRU[59]);somesolutionshavebeendeployedlikeskipdataconnections[81]toreducetheinputsize,theymaypreventsomevanishingcases,buttheyaddmorecomplexityasadditionalhiddenlayerstothegradient.Thisiswhymajorityofresearchisnowturningtoaddresstheagnosticaspectoftheexplanation,inordertoimposeastandardlimitfortheinput.
Thepreviousargumentationsfallintotheexample-basedapproach(see17),whereamodelselectionstartsfromanobservedfact,likeneighbourhoodaggregation,shorttermdependency,etc.However,thesemethodsneglecttheimpactofDLinputunitsontheperformance,thingthatjustifiesthe“accuracy”paradoxes(Fig11)eventhoughasentenceoranaspectmayreflectasimilarsentiment.Therefore,thechallengewillbetoprovideanexplainablesolutiontotheDNNinputunit(i.e.,model-basedapproach(see“TransparencyinDL”))asananswertothe“Researchquestions”(RQ1),whichsatisfiestheCAPs(Fig9),andthisisbasedonthecurrentresearchtrend(Fig7).
MethodsAsthehealthcaredomainisknowntobecriticandfullofcomplicatedscenariosthatdonotforgivemistakes,oneaccuratewaytoperformadeeplearningtechniqueisbypreservingthemodelrationality[82].Althoughmodeloriented[83]andexample-basedapproaches[84]haveshownanexplainableindependencylevelandaninputdependentoptimizationrespectively,theybothpositiontheproblemofclarifyingDNNswithinabarrierofhighinterpretabilitybutlowaccuracy,andviceversa.TheproposedapproachinthispaperconsistsofdesigninganovelDNNbasedonahybridgraphembeddings/attentionscoring.
DNNsareknowntoprovidehighaccurateoutcomes,thisisknownasthemodelperformance.Formallyitisdescribedas:
Nisthenumberofinputandhiddenlayers
disthedesiredoutputandzistheactualoutput
Mathematically,theoutputgeneration(z)throughthefeed-forwardandback-propagationcyclesisexpressedasaserieofpartialderivatives[33].Forinstance,supposethefollowingin-depthviewofadeepneuralarchitecture(Fig12)whichiscomposedoftwohiddenlayers,twoinputs(XA,XB)andtwooutputs(ZA,ZB).
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig12.TwohiddenlayerDNNstructure.
https://doi.org/10.1371/journal.pone.0260761.g012
Abstractionstrategy
Inordertoanswerresearchquestion(RQ2)(see“Researchquestions”)andfollowingthestructuredepictedbyFig12,wewillexploretheimpactoftheperformance“P”ontheinternalDNNstructure.Byconsideringbothweights“w1”and“w3”,thiscouldbeexpressedbythechainrule(1)and(2).ThepurposeistojustifyastructuralunitoftheDNNmodelthatcouldbeoptimizedwithcompliancetotheDNNfeedforwardandbackwardpaths,see(Researchquestions(RQ4)).
(1)(2)
Itisnoticeablethattheselectedpartialderivativeunitsareequalwithrespecttoboth“w1”and“w3”andthiswillbethesamefortheunitswithrespectto“w2”and“w4”.Thatreferstotherepetitiveunit(Fig12),whichmeansithasnodirectimpactontheglobalperformanceasoppositetothedecisionalunit,where:
thelastmultiplayerY1⊗w5givesq1asaninputtowardtheactivationfunctionandgeneratesZaasbothPath1orPath3.
However,itisobservedthatY1isalsoimpliedtogenerateZbbutthistimefromthemultiplayerY1⊗w7andgivesq2tothesecondactivationfunctionwhichformsPath2orPath4.
So,asmuchaswemovefurthertotheinput,therearemorecomputationalunitswhicharereused.
Problem.
BothInputs“Xa”and“Xb”participateforanintermediatecomponent“Y1”whichhasanimpactonthefinalmodelperformance.
Findawaytoestablishanimportancedegreebetweenmodelinputs(e.g.,“Xa”and“Xb”)tofigureouttheone(s)withhigherimpactonthefinaloutput.
Inputspaceembedding
Embeddingsongraphsareknowntobeveryusefulindealingwithhugegraphdataandrandomdistribution[85].SupposeG(N,E)agraphofNnodesandEedges,where:E∈[1…m]andN∈[1…n].
Themappingfunctionisbasedonathresholdwhichanalysestheneighbourhoodconnectionsofeachnode,suppose(n=500)isamaximumallowedconnection:
Incaseofnodeembeddings,foranoden1withc1connections:
Map={N},f1∈Nandc1<=500;
orMap={N—f1}wherec1>500.
TheproposedmodeldepictedbyFig13,consistsofagraph-basedstrategywhichaimstoreducetheinputrepetitiveunitintoalow-levelspacerepresentation,thenintoasmallvectorunitwhichmayalleviatethecomputationcomplexityofthewholeDNNmodel.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig13.TheproposedmodeforSA.
https://doi.org/10.1371/journal.pone.0260761.g013
Features’selectionviaattentionscoring
Insteadofmovingfromtheembeddedvectorspace(see[23])throughtheactivationfunctions,ithasbeenconsideredtoscoretheembeddedfeatures(v1…vn)followingeachhiddenlayer(L1…Lk)withasetofweightsaw,w=[1..n].
(3)Thescorevectorrepresentsatraceofreachingfeatures,thelatterwillbemainlyenvisagedbytheback-propagationlossfunctionoptimizer(seealgorithmbelow),thereforebyconsideringtheactivationfunction((4)isthe”SoftMax”forinstance),theattentionweightaw(i)forahiddenlayer(t)willbecalculatedasfollowing:
(4)
Startingfromtheembeddeddistributionoffeatures,the“Gaussian”distancemetric[86]hasbeenconsideredtoscoresimilar(close)featuresandthereforetogeneratea“decorated”neuralpaththroughthe“SoftMax”functionforinstanceandrepeatedlytoachievebestdistribution.Alevelofgenericityisaimedtobereassuredintermsoftheactivationfunctionselectionaswellastheembeddedfeaturevector.Tosummarize,thecorrespondinglearningalgorithmwillbe:
Algorithm:ToimplementtheproposedDNNmode(Embeddingandscoring)
1.Input:.txtfiles//rawdataset
2.Output:sentiment-polarity
3.ProcedureSA
4.Graph_SA=Networkx_Upload(pathtothecsv_file)
5.SamplesInitializing
6.vect=Embedding(Graph_SA)/*thiscallmaybenode/edgeembedding*/
7. FOReachfeaturewithinvectdo
8. Input[x]=feature
9. FORallxinDNNdo
10. Output[x]=module.forwardPropagation(Input[x])
11. IFOutput[x]>=threshold/*thresholdcouldbemaximumnodeconnectivity(e.g.,mostfrequentaspects*/
12. Scored[x]=Output[x]//theselectedfeature
13. End
14. Input[x+1]=Output[x]
15. End
/*Activationfunctioncondition(e.g.,Positivesentimentpolarityandattentionweightscalculation(2)*/
16. Sentiment-polarity=condition(Scored)
17. IFstilltrainingthen
18. FOReach[k-x]ScoredfeatureinDNNdo//kisthetotalfeatures’number
19. Scored=module.BackwardPropagation/*Backpropagationwillstopiffeatureisnotscored*/
20. Input[x+1]=Scored[x]
21. End
22. End
End
Thealgorithmabovecanbeexplainedinthreemainparts:
Thegraphgenerationandtheembeddedvectorextraction(see“InputSpaceEmbedding”),thiscoversline1tothe10thofthealgorithm.Theforwardactivationfunctionisappliedforeachembeddedfeature.
Theconditionalstepwhichisvariantaccordingtoaspecificdomain(e.g.,mostfrequentfeatureinourcase),thiscorrespondstotheline11.
Thefeatures’scoring,whichaconditionalstepaswell.However,itdiffersfromthepreviousoneaseachfeatureisconditionedwiththeactivationfunctions’requirements(i.e.,approximation,limitvalues,polarity,etc.).
Solutionforhighdimensionalspace
Ourproposedmode(checkthenumberofmodelswithnamesofeachmode)focusesontheinputunitoftheDNN,whereithasbeenshownthroughthechainrule(1)and(2)thatanyinputstream(Fig12)followsaspecificdecisionalpathwithrespecttothefeatures’weights.Ourcasestudy(see“Experiments”)imposesa2-ddimensionalrepresentationwhichcorrespondstothe“station-polarity”prediction.Thishasbeenachievedthroughagraphgenerationwithaneighbourhoodembeddings.Therefore,mostinfluentialnodeswithinagivenstationaretheoneshavingminimalGaussiandistance(i.e.,polarityofthemostfrequenttermwithinthetext.).
However,certainDLtasksliketimeseries[87],adversarialexamples[88]requireanextensionoftheclassicalclosenessmethods(i.e.,Gaussiandistance),asthedatamaybedistributedwithink-dimensionalspace.Followingthegraphembeddingsstrategydenotedpreviously,asolutiontothemultidimensionalspacemustsatisfyanumberofcriteria:
Theresultingembeddedstructuremustshowareducedfeaturesamplethantheoriginalinputone.
Theembeddingfunctionmustcomplywiththeactivationfunctioninordertocopewiththepathdecoration.
Asimilarprocess(i.e.,embeddingsandscoring)needstobeensuredwithinthek-dimensionalspaceinordertopreservetheoutputsemantic.
Theprojectionoftheabovecriteriaresultsonthemappingprobability[89]ofafeature’sinstancexiinalayeriwithitsrespectivepatternxjonalayerj.AhigherprobabilityPi|jmeansacloserinstanceifromj(i.e.,station-polarityinourcase):
(5)
Therefore,byconsideringallthek-dimensionalspace,thescoringfunction(3)aswellastheactivationfunction(4),theoutputattentionweightaw(i)foralayer(t)willbegivenby:
(6)
Thereisaclearmatchbetweentheresultingscoringfunction(6)andtheactivationfunction(i.e.,SoftMaxforinstance),andthatconfirmsthesecondpartof“Researchquestions”(RQ5)onthecomplianceofthefeedforwardpathwiththebackwardone,whichenablesanefficientperformance(see“ImprovingDNNperformanceviaadeterministicbackwardwalk”).
ExperimentsInthissection,anumberofempiricalexperimentshavebeenappliedontweetsHN-datasets(see27),datahasbeencollectedandunifiedfrom16differenthealthnewssources(stations),theproposedSAmodelgoesbeyondpolaritydetectionofpeople’sfeedbacktothemostinfluentialaspectsandsentenceswhichcontributetopolarityandsubjectivityvariations.
Afterdatahasbeencleanedandpre-processed,weaimtobuildapredictiveanalysisaroundmostinfluentialtokensamongtweets,afterthatweshowtheroleofedgeembeddingintermsoftransparencyandthebenefitofvisualizingthepolaritydistributiononareducedplan.
Datasets
Healthnewstweetsdatasets(HN-datasets)[90]consistsof16differentsourcesofpeople’stweetshavingexperiencedorhavebeenexposedtohealthcaresituation.Datasourcesarerepresentedthroughdifferenttextfiles(i.e.,goodhealth.txt,foxnewshealth.txt,cnnhealth.txt,etc.),whichcontainmorethan58000instancesand25000attributes.ThefollowingTable3listssomefeaturesof“KaiserHealthnews”,“Foxnews”and“GoodHealth”stationsforinstance.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageTable3.Characteristicsofthreehealthtweetsdatasets.
https://doi.org/10.1371/journal.pone.0260761.t003Thesedatasetsareusedtoprovethemodelworkingstrategy.Ithasbeendecidedtousethesedatasetstodealwithheterogeneousdata(i.e.,differentencoding,insignificantwords,healthcaredomainspecifications)andperformaglobalSAoftweets.
Developmentenvironment
ThisworkhasbeendoneonaUNIXsystem(UbuntuKylinver.20.10,architecturex86_64,processorintelcorei5).Python3.8wasthemainprogramminglanguageadoptedforimplementingthedataproceduresandthefollowingdataanalysistasks(seenextsub-sectionsinthecurrentsection“Experiments”).JupyterwasthemaindevelopmentAPIwithsomeofthefollowingpythonlibrariesforbasicfunctionsandvisualizations:
The“glob”moduleasaUnixpathnamestylefordatasetsuploading.
“nltk”asanaturallanguagetoolkitforstopwordsremoverforinstance.
“re”moduletodealwiththeunstructuredtweets’filesasregularexpressions.
“math”librarytoinvokemathematicalfunctions(e.g.,“Tanh”,“exp”functionstoimplementtheDNNactivations,“log”functionforlosssimulation,etc.).
“WorldCloud”libraryforfrequenttokensdisplay.
“Networkx”forgraphgeneration,etc.
Datacleaningandpre-processing
Thechallengingaspectaboutretrievingtweetsfromdifferentsourcesistheheterogeneousnatureofdatathatconsistsofdifferentencodingstyles(utf-8,cp1252,etc.,seeTable3),becauseanoverallSAaroundspecificdatasourcesisaimedtobeachieved.
Textsplit.Astweetsaretotallyinformal,alistofspecialcharacters[。
?、~@#¥%……&*();:\s+\.\!\/_,$%^*(+\"\’]+|[+―!]hasbeenconsideredtosplitlinesintorawsequencesoftweetscontainingonlynaturallanguageterms.
Stopwordremover.Tweetswithintheabovedatasetcomewithunstructuredtextualformat,thereforeapropertweetsanalysisconsistsofsplittingsentences/aspectsandremovingallsortofnon-significanceinordertoretrievethemostmeaningfulsentiment.NLTK’sstoplistEnglishwordshasbeenusedwithmoredomainspecificnon-relevantwords(i.e.,new,may,com,etc.).
Statisticalsentimentanalysis
Insteadofmeasuringindependentwordcombinations[91],theproposedapproachaimstoachieveaglobalsentimentpolarityofthewholedatacorpuswhichmergessources’heterogeneity,globaltermrelevantfrequencyandanadditionalsentimentfeaturecalled“subjectivity”.Aword-clouddistributionofmostfrequentwordsrelatedtohealthcarewithin“everydayhealth”,“gdnhealthcare”,“usnewshealth”isdepictedbyFigs14–16respectively.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig14.“evcerydayhealth”top-10.
https://doi.org/10.1371/journal.pone.0260761.g014
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig15.“gdnhealthcare”top-10.
https://doi.org/10.1371/journal.pone.0260761.g015
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig16.“usnewshealth”top-10.
https://doi.org/10.1371/journal.pone.0260761.g016
Polarityvssubjectivity.Inhealthcaredomain,itiscommonlyusedtodetachthesentimentpolarityfromthesentimentsubjectivity[52,91,92].However,asillustratedbyFig17,ithasbeenfoundahighcorrelationbetweenhighfrequenttokensandtheircorrespondentpolarity/subjectivity.ThePolar{P}andsubjective{S}valuesareinterpretedasfollows:
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig17.Overallpolaritydistribution.
https://doi.org/10.1371/journal.pone.0260761.g017P={>0→Positivesentiment
0→Neutralsentiment
<0Negativesentiment}
S={0→Objectivesentiment
>0→Subjectivesentiment}
Figs17and18showtheoverallpolaritydistributionaswellaspolar/subjectivevariationsrespectivelyofhealthnewstweetsbasedonrelevanttermsfrequencydistribution.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig18.Subjectivityandpolarityoftweets.
https://doi.org/10.1371/journal.pone.0260761.g018Amongthe16-healthnews,only34.3%offrequenttweetsexpressednegativehealthcaresentiments(P<0),while70.4%ofthemwereobjective(S<0.5),thisisduetotheinformalnatureoftweets.Furthermore,aninterestingobservationconcernsmostfrequentterms(Figs19and20)wheretherewasaparallelsymmetricdecreaseofsentimentstowardsnegativeandobjectivefeedbacks,whichimbalancestheoverallpositivityoftweetsaswellastheirsubjectivity.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig19.Termsfrequencyandpolarity/subjectivity.
https://doi.org/10.1371/journal.pone.0260761.g019
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig20.3-dplotfrequency,polarityandsubjectivitydistribution.
https://doi.org/10.1371/journal.pone.0260761.g020
Predictiveanalysis
Bytheproposedmodel,itisaimedtogobeyondthesubjectivityorpolaritydetection,toachieveatransparentpredictiveanalysisoftweets.Thegoalistotaketheaboveobservationsovertweetslevel,buttothedatasourcelevel.Thetechniqueconsistsofagraphgenerationwhichiscentredaroundthe16healthnewsstations,sogivenasourceoftweets,itwouldbepossibletopredictthesentimentpolarity/subjectivityinsteadofgoingthrougheachtweet,thentogetherthesestationsareconnectedwithinamap(Figs21and22).Thisapplicationcouldbeseenascommunitysentimentpolarprediction.Thefollowingdefinitionshavebeenproposedtobetterapproachthe“Researchquestions”(RQ3andRQ5).
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig21.Station-polaritygraphgenerationwithoutedgeembedding.
https://doi.org/10.1371/journal.pone.0260761.g021
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig22.Station-polaritygraphgenerationafteredgeembedding.
https://doi.org/10.1371/journal.pone.0260761.g022Definition.1GivenagraphG=(V,E),whereasetoftweets’stationsV={v1,…,v16}andapredictablesetofedgesE={e1,…,eN}andNistotalnumberoftweets.Apositivesentimentpolarityprediction(p)foreachstationisalinkprediction/inferenceproblemwhereaconnectionei=vi∝pexistsiff:
Lemma.Performingedgeembeddingsonthesourcedatapreventstheworst-caseiteration(i.e.,negativeorpositivesentiments)andmapsthestationpolarityfromDNNpredictiontoalinkpredictionproblem.
Example.ThefollowingFigs23and24representthesentimentpolarityofdifferentstations’tweetsbeforeandafterapplyingedgeembeddingsrespectively.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig23.Twodimensions(station-polarity)graphembedding.
https://doi.org/10.1371/journal.pone.0260761.g023
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig24.Attentionscoresforstations’polaritypredictions.
https://doi.org/10.1371/journal.pone.0260761.g024Inadditiontothevisibilitygainedbyembeddingthegraphedges,nodeembeddings(Fig23)allowareducedrepresentationoftheobservedpolarsentimentswithaclearpolarsymmetrywithinthenewsstations.Inourcase,thegeneratedgraphconsistsofasetofnodeswhichareonlyidentifiedbytheirlabelswithoutanyotherfeatures.Asthisisnotsupportedbytherecentembeddingalgorithms(e.g.,GraphSage[85]),anabstractversionofnode2vecalgorithmhasbeenimplementedwhichinsteadofrandomlyiteratesoverallconnections,itaggregatestheneighbourhoodnodesofagivenstationfollowingthepredefinedconstraint(seeDefinition.1).
Definition2.Ascoredconnectionbetweenastationandasentimentpolarityisaneighbourhoodaggregationofthescoresofitsneighbourssuchas:
(oranyotherthresholdcondition)needstobeverifiedduringfeed-forwardandback-propagationstagesoftheneuralnetworkalloverthe(n)dependencies.
AsshownbyFig24,scoringthepositivepolaritiesallowsatransparentconnectivityaswellasinferringnewconnections.
DNNconstruction.AflexiblemannertoimplementtheabovestepsistoproceedaDNNcodingfromscratch.WithrespecttothestructuredepictedbyFig12,ithasbeenchosentousethe“Tanh”activationfunctiononthetwohiddenlayerswhichapproximatethesentimentpolarity[–1,1],theoutputlayerhasbeenactivatedbythe“Sigmoid”functionwhichscalesthepolarvectorresultingfromhiddenlayersintopositiveornegativesentiments,Where:
(7)
(8)
Table4detailstheparametersoftheDNNstructuredepictedbyFig12,thebatchsizeofeachhiddenlayer,theactivationfunctions,theoptimizer,andtheestimatedlearningrateofeachlayer.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageTable4.InnerstructureparametersoftheproposedDNNcomparedtobasictechniques.
https://doi.org/10.1371/journal.pone.0260761.t004AspresentedbyTable4,themodel’slearningincreasesfromtheehiddenlayers(0.027to≈0.9)bytheoutputlayer,whichconfirmsthehypothesisofthechainrule(Fig12)(i.e.,mostoflearninghappensatthedecisionalandparticularlytheoutputlevel.).TheReLuactivationfunctionhasbeenactivatingtheinputlayerasitprovidesbetterapproximationfortheembeddedfeaturesvector,wherenoclassificationhasmadeyetexceptforthefrequencyanalysis(#1inTable4),Tanhfunctionhasbestapproximationforsentimentpolarity(moredetailedonsection6,“DNNconstruction”).Sigmoidhasbeenactivatingtheoutputlayertoinferpositiveandnegativeinstances.
AsmentionedbyFig25andbydisplayingthemodeltraininghistory(Fig26),ithasbeenshownarapidconvergencetoastableaccuracyof≈83%whichprovidesanansweronhowtostopthemodel’svanishingwhileitkeepspropagatingevenifitreachesanoptimalperformance.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig25.Impactofattentionscoresandembeddingsonthemodelconvergence.
https://doi.org/10.1371/journal.pone.0260761.g025
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig26.Modellossandaccuracyhistory.
https://doi.org/10.1371/journal.pone.0260761.g026Table5matchesthemeta-parametersinvolvedwithinthisstudywiththeirmeaningregardingthestudyingdomain.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageTable5.Meaningofthelearningmetrics’parameterswithregardstotheSAstudy.
https://doi.org/10.1371/journal.pone.0260761.t005
Accuracyistheproportionoftrueresultsamongalltheobservedpopulation:Acc=
F-measureisthemeanbetweenprecisionandrecall:F-measure=
Precisionistheproportionoftrueinstancespositivelypredictedamongthetruepositiveandfalsepositiveidentifiedones.Precision=
Recallreportsthepositivepolarsamplescorrectlypredictedtothetotalpositivesamples.Itreflectsthemodel’sabilitytoinferpositivesamples.Recall=
ThefollowingTable6reportsthesentimentclassificationmetricsusedinthisworkandtheobtainedvalues.Wehighlightwithinthesametabletheimpactoftheproposedtechniquesonebyoneonthemodel’sperformance.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageTable6.Proposedmodelperformance(shownwithbold)comparedtodifferenttechniquesonhealthnewstweetsdataset.
https://doi.org/10.1371/journal.pone.0260761.t006Duetothefeatures’opacity,anaiveMulti-layerDNNshowsalowaccuracy(67%)andapoorinferenceoftrueinstancespositivelypredicted(e.g.,51%precision).However,applyingthesametechniqueafterexcludingthenonrelevantfeaturesaftergraphembeddings(ISEinTable6)hasimprovedthemodel’saccuracyaswellastheprecision,buttherecall’srateremainsstable.Thisisexplainedbytheconditionalstep(see2ndpartofalgorithmabove,line11)wherethelatteronlyconsideredthepositivesentimentswhiletherecallimpliesthepositiveinstancesamongallpopulationincludingthenegativeones.Bycouplingthepreviousstepwiththescoringtechnique(adetailedexplanationisgivenin“ImprovingDNNperformanceviaadeterministicbackwardwalk”),themodelhasseenasignificantimprovementamongallmetrics,thatisjustifiedbythedeterminismgainedfromselectingrelevantfeaturesduringbackpropagation,becausethisselectioncoverstheactivationfunctions’derivatives,bothpositiveandnegativeinstanceshavebeencovered,thingthatexplainstherecallimprovement(from53%to89.5%)aswellastheothermetrics.,whichanswersthesecondpartof“Researchquestions”(RQ5).
Complexityanalysis
Timecomplexity.Thefollowingformula:
calculatestheoverallasymptoticcomplexity(TC)ofaDNN.Byconsideringagiventhreshold(h),afeed-forwardpropagationislimitedtotheinputspaceembeddingstimesthecostoftheactivationfunctions.Inourcasetherearetwohiddenlayersactivatedwith(tanh)and(sigmoid)functionsrespectively.Suppose:
TC(tanh)=O(t)andTC(sigmoid)=O(s),because(tanh)hasbiggerapproximation:O(t)>O(s)
graphembeddingscomplexityisO(|V|),Visthetotalgraphnodes,therefore:
Forback-propagation,thetimecomplexityisreducedtothescoringmethodwhichhas(h)asalimit,therefore:O(score)=O(Vh+Eh),fromthat:
TC=O(Vh+Eh)+O(|V|)⋅O(t)whichmaybereducedtoO(|V|)⋅O(t)intheworstcase.Thelatterreflectsthenodeembeddingsstrategyadoptedbytheproposedmethod.
Spacecomplexity.Insteadofstoringthematrices[94]offeaturevectorsandparameterweightsinmemoryduringtheexecutionoftheDNNmodel,theembeddedgraphentitiesaremainlysupposedtoallocatethememorywiththeactivationfunctiontraces.Atatimeinstanceepoch(i),(i=1…90)theproposedmodelhistory(e.g.,Fig26)allowstorecordthefollowingmetricssummarizedinTable7.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageTable7.CPUoccupancyandlearningmetricsfortheproposedmodel.
https://doi.org/10.1371/journal.pone.0260761.t007ThecachehierarchyoftheCPUenablestorecordseveraltrainingbatchesoftheproposedDNN(seeTable7).Theexecutionflowshowsareducedfootprint(i.e.,3.0CPUoccupancy)resultedfromthegraphembeddingsfollowedbythebackwardscoring(seethebelowsection).Thereducedinstructionvectormayrepresentanalternativetotheindeterministicsparsitysolution[95]foranefficientDNNtraining.
AsitisshownfromFig27,theCPUexperiencesabatchoftrainingandmostofitstimeonthefirstmodel’slayers(hiddenlayersfromFig27),withanaverageCPUtimeof67.6%infirsthiddenlayerto49.09%insecondone,itendswithlessCPUoccupationwithanaverageof26.7%onthedecision(output)layer.ThatjustifiesourhypothesisabouttherepetitiveworkintheinputunitofaDNN.However,themodel’saccuracyisshowntoperformreasonablywellsinceearlierneurones,that’sduetotheselectionstrategywhichpreventsfeatures’sparsityandoverfitting.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig27.AverageCPUtimeandmodel’sefficiencythrougheachlayer.
https://doi.org/10.1371/journal.pone.0260761.g027
EvaluationBythissection,theimpactoftheproposedlearningmethodwillbeemphasizedthroughdifferentstages:training,learning,complexityandvalidation.
Duetotheheterogeneityofthe16news’stationsandfeatures’sparsityimposedtothegeneratedgraphcomponents(i.e.,nodesareonlyidentifiedbytheirlabels),thepreliminarytests(Fig28)showalowmodelperformanceevenifitdoesnotoverfitafterembeddingtheinputspace,thelowaccuracyremainsanissueifnotimproved,becauseDNNsareknowntoperformwellwithhugedatacorpus.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig28.StabilityofproposedDNNafter90epochsand10batches.
https://doi.org/10.1371/journal.pone.0260761.g028Althoughthelosshasbeensignificantlyminimized(Fig29(B)),theinstabilityremarkedwithintheaccuracy(Fig29(A))variationsremainsabottlenecktowardsthemodeladaptability.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig29.(a)Instabilityofaccuracy.(b)Lossminimization.
https://doi.org/10.1371/journal.pone.0260761.g029
ImprovingDNNperformanceviaadeterministicbackwardwalk
AsshownbyFigs25and30,scoringthelearningpathwhichisrecognizedwhiletrainingtheDNNmodelbecameamandatorystepinourcasestudy,inordertoimprovethewholeaccuracy.Thiswillrepresentatypicalexampleofagoodtrade-offtransparency(graphtransparency)andefficiency(DNNperformance).
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig30.Neuralpath’sembedding+scoring.
https://doi.org/10.1371/journal.pone.0260761.g030
Transparencyandlearningperformance.Therestrictionimposedtotheinputnodesallowedaleveloftransparencyregardingthepredictivestudy,thishasbeenreplicatedonthefeed-forwardpath,whereasdescribedbyFigs31–33,ifweconsiderpositivesentiments(polarity)as“blue”instancesandthenegativeonesas“red”ones,thedecisionboundaryshowedabetterseparationofbothpolarities.However,bestadjustmentisshownbyFig33afterscoringtheback-propagationpath(stampingpositivepolarityasaconstraint).
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig31.Naïvetrainingandlearning.
https://doi.org/10.1371/journal.pone.0260761.g031
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig32.Decisionboundaryafteredgeembedding.
https://doi.org/10.1371/journal.pone.0260761.g032
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig33.Impactofedgeembeddingandpathscoringonthedecisionthreshold.
https://doi.org/10.1371/journal.pone.0260761.g033Consequently,resultsonadjustingthelearningcurvewithbothembeddingsandscoringmethodssequentiallywithrespecttotrainingscores(batchgradientdescent)areillustratedbyFig34.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig34.Learningimprovementswithembeddingthenscoringtechniques.
https://doi.org/10.1371/journal.pone.0260761.g034TheReceiver-Operating-Characteristic(ROC)andArea-Under-the-curve(AUC)aretworelevantmetricsformodels’confidenceespeciallyinhealthcaredomain[96],thosetwometricsallowtovisualizethetrade-offbetweenthemodel’ssensitivityandspecificity,where:
Sensitivity=true-positiverate(rateofcorrectlyidentifiedsentiments)
Specificity=1–false-positiverate(rateofincorrectlyidentifiedsentiments)
asillustratedbyFig35,theproposedlearningmodelshowedahigherAUCof94%with90%maximizationofcorrectlyidentifiedsentiments.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig35.ROCcurvesfortheproposedDNNmodel.
https://doi.org/10.1371/journal.pone.0260761.g035
Comparingtoothermethods.Asapartoftheevaluation,theproposedmodeliscomparedtoseveralcomputationalframeworksrelatedtohealthcaredomainwhichaimedtoanalysetweetsandextractsentimentpolarityfollowingspecifictopics.SAwasthemosttargetedtopic[97]amongtheotherrelateddomains.However,thisprocessisstillnotdisclosed,andthefeatureextractionmechanismforsentimentclusteringisstillnotwelldefined.AsdepictedbyTable8,commonworkswhichhaveaddressedtwitterhealthnewsdatasetusedmachinelearningtechniquesforsentiments’classification.However,asarguedinthenextsection,adeepinvestigationofSArequiresdifferentapproximationswhichgobeyondlinearMLmodels.
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageTable8.Comparisonoftheproposedmethod(shownwithbold)performancewithotherapproachesontwitterhealthdataset.
https://doi.org/10.1371/journal.pone.0260761.t008Ourproposedmethodshowsgreatoutcomescomparingwithothertechniques(Table7),thiscouldbeemphasizedwiththefollowingaspects:
Semanticenrichment:ourproposedDNNcoversbothsentimentswithinseparatetweetsaswellasthewholetextcorpusforanoverallpolarity[–1,1]andsubjectivity[0,1],thisincludesmostfrequentterms.
Complexity:acomplexityanalysishasbeenexplicitlyconducted,theasymptoticresultsfollowtheabstractionstrategy(Fig12)byrestrictingthewholemodelcomplexitytotheembeddednodestimesthecomplexityofthedecisionalfunction(Tanh).Thatperformanceismuchbetterthanconsideringallinputspaceforinstance[99].
Efficiency/determinism:AlthoughSVMhasprovenitsrobustnessandperformanceinmanySAtasks(seeTable2),itscombinationwithLSTMrepresentsabottlenecktowardsaboostedperformance.Thiscouldbejustifiedbythepre-traininganddependencycostofLSTMattheinputdata[100].However,ourproposedbackpropagationselectivestrategyincreasesthemodel’sdeterminism(i.e.,rapidsurgeofthelearningrate(Fig34)).
Transparency:Ourmodelischaracterisedbyatransparentpredictiongenerationprocess,thisincludestheearlierconceptualstages(i.e.,Figs12and13)followedbyavisualdatadistributionandtheimpactoftheproposedtechniquesonbestadjustingthedecisionboundaryforsentimentclassification(Figs31,32and33).Asoppositetotheclassicalclassifiers[102],theproposedDNNstructureallowsdifferentapproximationsoftheproblem(i.e.,polarity,subjectivity,frequency,etc),thatenablesaglobalobservationoftheSAoverallthenews’stations.Thecomplianceofthebackwardselectionmethodwithbackpropagationalgorithm(see:“Features’selectionviaattentionscoring”,“ImprovingDNNperformanceviaadeterministicbackwardwalk”)doesnotrequireanyadditionaltrainingexamplesorhiddenlayersasthecasein[103],whichallowedthemodelcomplexitytoberestrictedtotheembeddedspace.
Discussions
ModelsonexplainableAI
AlthoughDARPA’suserinterface[74]hasbeenbuiltaroundusers’expertiseandtheircognitionability,itdisguisesthetraceableaspectofthepredictionmaking,whichmayincludetheactiveneuronsandthepredictionpath.
Insteadofexplaininglearningmodelsaftertheirrealization,currenttrendsinmachinelearning[104]suggestthatitismoreprominenttoincludeexplicabilityfromthefirstconceptualstepsofthemodel.However,asillustratedbyFig36,thenon-lineardistributionwhichresultsfromdistinctivefeaturescales(e.g.,Frequency[0…n],subjectivity[0…1],etc.)requiresanalternativemethodthantraditionalnonlinearMLapproximation,wherethelatterisappliedtothewholeobservations.ADNNcouldapproximateeachfeatureobservationfollowingspecificlayers,thatwhatexplainsahighersensitivityandrecallperformance(Table8).
LSTMcanonlyrelateagivenaspecttothepreviousone.ButwithintheSAcontext,furtherdependenciesmayoccurandneedtobecaptured.Forinstance,in[100](seeTable8)anindexhadtobedoneinordertoboostthemodelperformance.
Agoodunderstandingoftheinputdatasetcouldbeachievedbyanefficientpre-processing.However,withDNNs,thisdoesnotguaranteeagoodperformance,asthelatter(see21)isusuallyconditionedbyarandomweightassignmenttoactivatecertainfunctions.Bytheproposedmodel,weaimtomakethisprocessmoredeterministic.
Dataisusuallypre-processedbeforetrainedandvalidatedbyaDLmodel,thathelpsremovingimpuritieslikestopwords,insignificance,etc.,buteventuallypromotethelossofdatainformationcentrality.Whereas,byinvestigatingagraphtheory(i.e.,embeddings)accompaniedwithaDNNdataclosenesscentralityispreserved(Fig23).
Download:
PPTPowerPointslidePNGlargerimageTIFForiginalimageFig36.Binarysentimentpolaritydistributionoftweets.
https://doi.org/10.1371/journal.pone.0260761.g036
Limits
Althoughtheproposedmodelshowedgreatconvergencewhichpreventsvanishingproblemandsavestrainingtime,itsperformancewasrelativelyweakwhendeployedonx86architecturewith5GBavailableRAM(Fig28).
TheembeddingmethodpreventstheDNNtobroadthelearningscalebecausethelayersareactivatedbyproceedingtheembeddedvectoralthoughthemodelbackpropagatesthroughalltheinstances(seeAlgorithmabove)eventhoughthelossmeasureisconsiderablyless(Fig29(B)),itmainlyoptimizesthescoredweights(e.g.,positiveweights).
Disclosingfeaturessemanticsin[99]hasprovenitsresiliencyinhandlingunstructureddata.Inourmodel,theembeddedfeaturevectoraswellasthescoredsamplescouldbeenrichedbyanaccompaniedcontextvectorforunderstandabilitypurposes.
ConclusionandfutureworkInthisresearchwork,weaimtoproposeatransparentDNNmodelforasentimentclassifier.Ithasbeendecidedtoproceedthedevelopmentwithoutusingbuilt-inDLlibrariesexceptforevaluationmetricsinvocation,andthatwasinordertoexactlydesigneachunit:input,decisionandoutputwiththedefinedmethod(see“Methods”).Thelatterconsistsofanewperformanceimprovementstrategywhichcombinesasparsegraphembedding(i.e.,node,edgeswithnofeatures)andscoringpathsfortheinputanddecisionalunitsrespectively.ThemodelistrainedandtestedonTwitterhealthnewsdataset,whereasentimentpredictiveanalysishasbeenappliedtoeachnewssourcesbasedonthemostfrequentedtweets.Webroadthefeaturespacebynormalizingbothtokenaspectsandtweetsforeachofthe16newssothataglobalsentimentpolarityisinferred.Resultsshowstate-of-the-artperformancewhilecomparingtoothermodels(see“Predictiveanalysis”and“Comparingtoothermethods”).Moreover,thetransparencyandtheefficiencyofthemodelinstabilizingthelearningcurvewithbetterbinaryclassificationoftweets(seeabove).
Thisworkcanbenefitfromseveralimprovementsinthefuture.Forinstance:
Exploringthetransferablelearningaspectofgraphembeddingstoincludeotherupdatedtopicsontwitter(e.g.,Covid-19)wheremoretransparencyisrequired.Thismaybeachievedbymovingfromthetransductivetotheinductivelearning.Furthermore,thatmayprovideananswertothedynamicaspectofgraphsastheinputdatamayevolveoverthetime.
Provingthemodelresiliencyagainstnewunstructuredandsemi-structureddata(SemEval-2014task7[105]).
Intermsofperformance,ithasbeenproventhattheembeddingtechniquehadabigimpactonthemodelaccuracy(see“Evaluation”).Thus,byconsideringacontextfeatures’vectorwhiletrainingthemodel,thiscouldbroadthelearningstageandimprovethemodelperformance.
References1.
ChenL-C,LeeC-M,ChenM-Y.(2019).“Explorationofsocialmediaforsentimentanalysisusingdeeplearning”.SoftComput24,8187–8197(2020).https://doi-org.libaccess.hud.ac.uk/10.1007/s00500-019-04402-8.Accessedon14/01/202010:17.
ViewArticle
GoogleScholar
2.
MasudM,MuhammadG,AlhumyaniH,AlshamraniSS,CheikhrouhouO,IbrahimS,etal.“Deeplearning-basedintelligentfacerecognitioninIoT-cloudenvironment”.ComputerCommunication.(2020).Volume152,15,pp.215–222,Accessedon17/05/201912:04.
ViewArticle
GoogleScholar
3.
VyasV,UmaV.“Approachestosentimentanalysisonproductreviews”.Sentimentanalysisandknowledgediscoveryincontemporarybusiness.IGIGlobal,Pennsylvania,pp15–30.
ViewArticle
GoogleScholar
4.
RodriguesChagasBN,NogueiraVianaJA,ReinholdO,LobatoF,JacobAFL,AltR.“CurrentapplicationsofmachinelearningtechniquesinCRM:aliteraturereviewandpracticalimplications”.IEEE/WIC/ACMIntConfWebIntell(WI)2018:452–458.https://doi.org/10.1109/WI.2018.00-53.Accessedon05/07/202122:45.
ViewArticle
GoogleScholar
5.
RambocasM,PachecoBG.“Onlinesentimentanalysisinmarketingresearch:areview”.2020.JResInteractMark12(2):146–63.
ViewArticle
GoogleScholar
6.
RiosN,deMendoncaNetoMG,SpinolaRO.“Atertiarystudyontechnicaldebt:types,managementstrategies,researchtrends,andbaseinformationforpractitioners”.InfSoftwTechno102:117–145.
ViewArticle
GoogleScholar
7.
AmaraS,SubramanianRR.“Collaboratingpersonalizedrecommendersystemandcontent-basedrecommendersystemusingTextCorpus”.20206thInternationalConferenceonAdvancedComputingandCommunicationSystem(ICACCS),Coimbatore,India,2020,pp105–109.8.
RozanskaA,PodporaM.“MultimodalsentimentanalysisappliedtointeractionbetweenpatientsandhumanoidrobotPepper”.IFAC-PapersOnline,2019.Accessedon22/07/202121:15.
ViewArticle
GoogleScholar
9.
PRXJJU.“ArtificialIntelligenceinSpaceExploration”.AnalyticsVidhya.2021.Analyticsvidhya.com/blog/2021/01/artificial-intelligence-in-space-exploration/.pmid:34124465
ViewArticle
PubMed/NCBI
GoogleScholar
10.
VoraS,MehtaRG.“InvestigatingPeople’sSentimentfromTwitterDataforSmartCities:ASurvey”.InternationalJournalofComputationalIntelligence&IoT,vol2,No2.2019.
ViewArticle
GoogleScholar
11.
AsifM,IshtiaqA,AhmadH,AljuaidH,ShahJ.“Sentimentanalysisofextremisminsocialmediafromtextualinformation”.TelematicsInformatics48.2020.1013445.
ViewArticle
GoogleScholar
12.
HassanSaif,MiriamFernandez&HarithAlani.“EvaluationDatasetforTwitterSentimentAnalysis”.2013.Asurveyandanewdataset,theSTS-Gold.CEURWorkshopProceedings.1096.
ViewArticle
GoogleScholar
13.
CunliffeE,CuriniL.“ISISandheritagedestruction:Asentimentanalysis”.Antiquity,92(364),1094–1111.2018.
ViewArticle
GoogleScholar
14.
MatalonY,MagdaciO,AlmozlinoA,etal.“Usingsentimentanalysistopredictopinioninversionintweetsofpoliticalcommunication”.2021.SciRep11,7250.pmid:33790339
ViewArticle
PubMed/NCBI
GoogleScholar
15.
ElbattahM,ArnaudE,GignonM,DequenG.“TheRoleofTextAnalyticsinHealthcare:AReviewofRecentDevelopmentsandApplications”.InProceedingsofthe14thInternationalJointConferenceonBiomedicalEngineeringSystemsTechnologies(BIOSTEC2021).
ViewArticle
GoogleScholar
16.
ClarkEM,JamesT,JonesCA,AlapatiA,UkanduP,DanforthCM,etal.“ASentimentAnalysisofBreastCancerTreatmentExperiencesandHealthcarePerceptionsAcrossTwitter”.2018.arXiv:1805.09959v1[cs.CL].Accessedon29/06/202113:25.
ViewArticle
GoogleScholar
17.
GuY,CelliF,SteinbergerJ,AndersonAJ,PoesioM,StrapparavaC,etal.“UsingBrainDataforSentimentAnalysis”.JLCL2014Band29(1)–79–94.
ViewArticle
GoogleScholar
18.
AhmadM,AftabS,BashirMS,HameedN.“SentimentAnalysisusingSVM:ASystematicLiteratureReview”.(IJACSA)InternationalJournalofAdvancedComputerScienceandApplications,vol9,No2.2018.
ViewArticle
GoogleScholar
19.
KowsariK,JafariMeimandiK,HeidarysafaM,MenduS,BarnesL,BrownD.“Textclassificationalgorithms:Asurvey”.Information(2019),10,150.
ViewArticle
GoogleScholar
20.
MikeT.“Genderbiasinmachinelearningforsentimentanalysis”.OnlineInformationReview;Bradford,(2018).Vol42,N°3.pp-343–354.
ViewArticle
GoogleScholar
21.
AshokkumarP,SivaShankarG,GautamSrivastava,PraveenKumarReddyMaddikunta,andThippaReddyGadekallu.2021.“ATwo-stageTextFeatureSelectionAlgorithmforImprovingTextClassification”.ACMTrans.AsianLow-Resour.Lang.Inf.Process.20,3,Article49(April2021),19pages.https://doi.org/10.1145/3425781.
ViewArticle
GoogleScholar
22.
ShankarGS,AshokkumarP,VinayakumarR,GhoshU,MansoorW,AlnumayWS."AnEmbedded-BasedWeightedFeatureSelectionAlgorithmforClassifyingWebDocument",WirelessCommunicationsandMobileComputing,vol.2020,ArticleID8879054,10pages,2020.https://doi.org/10.1155/2020/8879054.Accessedon25/06/202123:25.pmid:33088230
ViewArticle
PubMed/NCBI
GoogleScholar
23.
HaqueTU,SaberNN,ShahFM.“SentimentanalysisonlargescaleAmazononproductreviews”.In2018IEEEInternationalConferenceonInnovativeResearchandDevelopment(ICIRD),(2018).pp1–6.
ViewArticle
GoogleScholar
24.
SiemonsmaPC,BlomJW,HofstetterH,vanHespenATH,GusseklooJ,DrewesYM,etal.(2018).“Theeffectivenessoffunctionaltaskexerciseandphysicaltherapyaspreventionoffunctionaldeclineincommunitydwellingolderpeoplewithcomplexhealthproblems”.BMCGeriatr18,164.pmid:30016948
ViewArticle
PubMed/NCBI
GoogleScholar
25.
AbualigahL,AlfarH,ShehabM,AbuHusseinAM.“SentimentAnalysisinHealthcare:ABriefReview.Inbook:RecentAdvancesinNLP:TheCaseofArabicLanguage”.(2020).
ViewArticle
GoogleScholar
26.
YangK,ZhuJ,GuoX."POIneural-recmodelviagraphembeddingrepresentation".InTsinghuaScienceandTechnology,(2021ª).Vol26,no2,pp208–218,
ViewArticle
GoogleScholar
27.
YueX,WangZ,HuangJ,ParthasarathyS,MoosavinasabS,HuangY,etal.“Graphembeddingonbiomedicalnetworks:methods,applicationsandevaluations”.Bioinformatics,Volume36,Issue4,15February2020,pp1241–1251,pmid:31584634
ViewArticle
PubMed/NCBI
GoogleScholar
28.
YangJ,ZouX,ZhangW,HanH.“MicroblogsentimentanalysisviaembeddingsocialcontextsintoanattentiveLSTM”.EngineeringApplicationsofArtificialIntelligence.(2021).Vol97,104048.
ViewArticle
GoogleScholar
29.
BijarK,ZareH,VeisiH,KebriaeiE.“LeveragingDeepGraph-BasedTextRepresentationforSentimentPolarityApplications”.ExpertSystemswithApplications.(2019).Volume144,
ViewArticle
GoogleScholar
30.
IvakhnenkoAG,LapaVG.(1965).CyberneticPredictingDevices.CCMInformationCorporation.NewYork:CCMInformationCorp.pmid:1434529931.
MinskyM.(1963).“Stepstowardartificialintelligence””.Computersandthought,McGraw-Hill,NewYork,pp406–450.https://doi.org/10.1037/h0040616pmid:1408679132.
AlazabM,KhanS,RamaKrishnanSS,PhamQ-V,KumarReddyMP,ReddyGadekalluTR.“AMultidirectionalLSTMModelforPredictingtheStabilityofaSmartGrid”.Vol8,2020.Accessedon26/06/202107:45.
ViewArticle
GoogleScholar
33.
LillicrapTP,SantoroA.“Backpropagationthroughtimeandthebrain.CurrentOpinioninNeurobiology”.(2019).Vol55,pp82–89.pmid:30851654
ViewArticle
PubMed/NCBI
GoogleScholar
34.
GuoY,ChenJ,DuQ,V-DHengelA,ShiQ,TanM.“Multi-waybackpropagationfortrainingcompactdeepneuralnetworks”.NeuralNetworks.Volume126,June2020,pp250–261.pmid:32272429
ViewArticle
PubMed/NCBI
GoogleScholar
35.
SmithRC.“It’sTimetoViewSevereMedicallyUnexplainedSymptomsasRed-FlagSymptomsofDepressionandAnxiety”.JAMANetwOpen.(2020).3(7):e2011520.pmid:32701154
ViewArticle
PubMed/NCBI
GoogleScholar
36.
HuangW,RaoG,FengZ,CongQ.“LSTMwithsentencerepresentationsfordocument-levelsentimentclassification”.Neurocomputing,(2018).308:49.
ViewArticle
GoogleScholar
37.
ViolosJ,TserpesK,PsomakelisE,PsychasK,VarvarigouTA.(2016).“Sentimentanalysisusingword-graphs”.InWIMS,p_22.
ViewArticle
GoogleScholar
38.
ZhaoP,HouL,WuO.“Modelingsentimentdependencieswithgraphconvolutionalnetworksforaspect-levelsentimentclassification”.Knowledge-BasedSystems.Volume193,105443.https://doi.org/10.1016/j.knosys.2019.105443.
ViewArticle
GoogleScholar
39.
VeličkovićP,CucurullG,CasanovaA,RomeroA,LioP,BengioY.“GraphAttentionNetworks”.MachineLearning(stat.ML).2017.ArXiv:1710.10903[stat.ML].
ViewArticle
GoogleScholar
40.
ShmidhuberJ.“DeepLearninginNeuralNetworks:AnOverview”.TechnicalReportIDSIA-03-14/;2014,arXiv:1404.7828v3[cs.NE].
ViewArticle
GoogleScholar
41.
SinghA,SenguptaS,LakshminarayananV.“Explainabledeeplearningmodelsinmedicalimageanalysis”.2020;arXiv:2005.13799v1[cs.CV].pmid:34460598
ViewArticle
PubMed/NCBI
GoogleScholar
42.
RichardsBA,LillicrapTP,BeaudoinP,BengioY,BogaczR,ChristensenA,etal.“Adeeplearningframeworkforneuroscience”.NatNeurosci.2019Nov;22(11):1761–1770.Epub2019Oct28.pmid:31659335;PMCID:PMC7115933.
ViewArticle
PubMed/NCBI
GoogleScholar
43.
SunJ,BinderA."GeneralizedPatternAttributionforNeuralNetworkswithSigmoidActivations".InternationalJointConferenceonNeuralNetworks(IJCNN),Budapest,Hungary,2019;pp1–9,https://doi.org/10.1109/IJCNN.2019.885176144.
WuY,ZhangS,ZhangY,BengioY,SalakhutdinovRR.“Onmultiplicativeintegrationwithrecurrentneuralnetworks”.InAdvancesinNeuralInformationProcessingSystems,2016;pp2856–2864.
ViewArticle
GoogleScholar
45.
KumarS,SharmaA,TsunodaT.“Brainwaveclassificationusinglongshort-termmemorynetworkbasedOPTICALpredictor”.SciRep9,9153.2019;pmid:31235800
ViewArticle
PubMed/NCBI
GoogleScholar
46.
LiB,ChengZ,XuZ,YeW,LukasiewiczT,ZhangS.“Longtextanalysisusingslicedrecurrentneuralnetworkswithbreakingpointinformationenrichment”.In:Proceedingsofthe2019IEEEinternationalconferenceonacoustics,speechandsignalprocessing,ICASSP2019.Vol124,pp51–60.
ViewArticle
GoogleScholar
47.
LiuYH,SmithS,MihalasS,Shea_BrownE,SümbülY.“Asolutiontotemporalcreditassignmentusingcell-type-specificmodulatorysignals”.BioRxiv.2020;https://doi.org/10.1101/2020.11.22.393504.
ViewArticle
GoogleScholar
48.
WeberT,HeessN,BuesingL,SilverD.“CREDITASSIGNMENTTECHNIQUESINSTOCHASTICCOMPUTATIONGRAPHS”.2019;arXiv:1901.01761v1[cs.LG].
ViewArticle
GoogleScholar
49.
GoyalA,KeNR,LambA,HjelmRD,PalC,PineauJ,etal.“ACTUAL:ACTOR-CRITICUNDERADVERSARIALLEARNING”.2017,arXiv:1711.04755v1[stat.ML].
ViewArticle
GoogleScholar
50.
GraziotinMD,KuutilaM.“Theevolutionofsentimentanalysis—Areviewofresearchtopics,venues,andtopcitedpapers”.ComputerScienceReview,(2018),Vol27,pp16–32,ISSN1574-0137,https://doi.org/10.1016/j.cosrev.2017.10.002.
ViewArticle
GoogleScholar
51.
TorresAD,YanH,AboutalebiAH,DasA,DuanL,RadP.“Chapter3—PatientFacialEmotionRecognitionandSentimentAnalysisUsingSecureCloudWithHardwareAcceleration”.Intelligentdata-Centricsystems.2018.pp61–89,
ViewArticle
GoogleScholar
52.
ZunicA,CorcoranP,&SpasicI.“SentimentAnalysisinHealthandWell-Being:SystematicReview”.JMIRmedicalinformatics,2020,8(1),e16023.pmid:32012057
ViewArticle
PubMed/NCBI
GoogleScholar
53.
AravantinoV,DiehlF.“TraceabilityofDeepNeuralNetworks.MachineLearning(cs.LG)”.(2018).arXiv:1812.06744[cs.LG].
ViewArticle
GoogleScholar
54.
YinY,SongY,ZhangM.“Document-levelmulti-aspectsentimentclassificationasmachinecomprehension”.In:Proceedingsofthe2017conferenceonempiricalmethodsinnaturallanguageprocessing,pp2044–2054,http://www.cse.ust.hk/~yqsong/papers/2017-EMNLP-AspectClassification.pdf.
ViewArticle
GoogleScholar
55.
HuangY,JinW,YuZ,LiB.“SupervisedfeatureselectionthroughDeepNeuralNetworkswithpairwiseconnectedstructure”.Knowledge-BasedSystems,2020,Vol204,106202,https://doi.org/10.1016/j.knosys.2020.106202.
ViewArticle
GoogleScholar
56.
KrausM,FeuerriegelS.“Sentimentanalysisbasedonrhetoricalstructuretheory:learningdeepneuralnetworksfromdiscoursetrees”.ExpertSystAppl,(2019),118:65–79.
ViewArticle
GoogleScholar
57.
MaasAL,DalyRE,PhamPT,HuangD,NgAY,PottsC.“Learningwordvectorsforsentimentanalysis”.In:Proceedingsof49thannualmeetingoftheAssociationforComputationalLinguistics:HumanLanguageandTechnology,2011.pp142–150.
ViewArticle
GoogleScholar
58.
ArulmuruganR,SabarmathiKR,AnandakumarH.“Classificationofsentencelevelsentimentanalysisusingcloudmachinelearningtechniques”.ClusterComput22,1199–1209.2019,https://doi-org.libaccess.hud.ac.uk/10.1007/s10586-017-1200-1.
ViewArticle
GoogleScholar
59.
SongM,ParkH,ShinK-s.“Attention-basedlongshort-termmemorynetworkusingsentimentlexiconembeddingforaspect-levelsentimentanalysisinKorean”.InformationProcessingandEManagement,2019,Vol56,Issue3,pp637–653.
ViewArticle
GoogleScholar
60.
ReZ,ZengG,ChenL,ZhangQ,ZhangC,PanD."ALexicon-EnhancedAttentionNetworkforAspect-LevelSentimentAnalysis,"inIEEEAccess,2020,vol.8,pp93464–93471,
ViewArticle
GoogleScholar
61.
YouQ,CaoL,JinH,LuoJ,“Robustvisual-textualsentimentanalysis:Whenattentionmeetstree-structuredrecursiveneuralnetworks,”inProc.ACMMultimedia,2016,pp.1008–1017.
ViewArticle
GoogleScholar
62.
ChenF,JiR,SuJ,CaoD,GaoY.“Predictingmicroblogsentimentsviaweaklysupervisedmultimodaldeeplearning”.IEEETransMultimed.2018,20(4):997–1007.
ViewArticle
GoogleScholar
63.
DengJ,etal.(2009).“ImageNet:Alarge-scalehierarchicalimagedatabase,”inProc.IEEEConf.Comput.Vis.PatternRecogn,pp248–255.
ViewArticle
GoogleScholar
64.
XueW,ZhouW,LiT,WangQ.“MTNA:Aneuralmulti-taskmodelforaspectcategoryclassificationandaspecttermextractiononrestaurantreview”.ProceedingsoftheEighthInternationalJointConferenceonNaturalLanguageProcessing.2017,(Volume2:ShortPapers),2,pp151–156.
ViewArticle
GoogleScholar
65.
AgarwalA,YadavA,VishwakarmaDK.“MultimodalsentimentanalysisviaRNNvariants”.InIEEEinternationalconferenceonbigdata,cloudcomputing,datascienceandengineering(BCD),2019,pp19–23.
ViewArticle
GoogleScholar
66.
ZadehA,ZellersR,PincusE,MorencyL."MOSI:MultimodalCorpusofSentimentIntensityandSubjectivityAnalysisinOnlineOpinionVideos",IEEEIntell,Syst,2016.
ViewArticle
GoogleScholar
67.
PandeyaYR,LeeJ.“Deeplearning-basedlatefusionofmultimodalinformationforemotionclassificationofmusicvideo”.MultimediaToolsandApplications.2021,80(2),pp2887–2905.
ViewArticle
GoogleScholar
68.
El-AffendiM,AlrajhiK,HussainA.“ANovelDeepLearning-BasedMultilevelParallelAttentionNeural(MPAN)ModelforMultidomainArabicSentimentAnalysis”,inIEEEAccess,vol.9,pp7508–7518,2021.
ViewArticle
GoogleScholar
69.
WANGX,WUP,LIUG,HUANGQ,HUX,XUH.“LearningperformancepredictionviaconvolutionalGRUandexplainableneuralnetworksine-learningenvironments”.Computing,ArchivesforInformaticsandNumericalComputation,2019,101(6),pp587–604.
ViewArticle
GoogleScholar
70.
YangF,ZhangW,TaoL,MaJ.“TransferLearningStrategiesforDeepLearning-basedPHMAlgorithms”.Appl.Sci.2020,10,2361,2020;
ViewArticle
GoogleScholar
71.
SeoD,OhK,OhI."RegionalMulti-ScaleApproachforVisuallyPleasingExplanationsofDeepNeuralNetworks,"inIEEEAccess,vol.8,pp8572–8582,2020;
ViewArticle
GoogleScholar
72.
KimB,ParkJ,SuhJ.“TransparencyandaccountabilityinAIdecisionsupport:Explainingandvisualizingconvolutionalneuralnetworksfortextinformation”.DecisionSupportSystems.Vol134,11330.2020;https://doi.org/10.1016/j.dss.2020.113302.
ViewArticle
GoogleScholar
73.
YuanH,TangJ,HuX,JiS.“XGNN:TowardsModel-LevelExplanationsofGraphNeuralNetworks”,2020°,arXiv:2006.02587v1[cs.LG].
ViewArticle
GoogleScholar
74.
SheL,ChaiJY.“InteractiveLearningforAcquisitionofGroundedVerbSemanticstowardsHuman-RobotCommunication”.InProceedingsofthe55thAnnualMeetingoftheAssociationforComputationalLinguistics,2017,vol.1,1634–44.Stroudsburg,PA:AssociationforComputationLinguistics.https://doi.org/10.18653/v1/P17-115075.
IslamM,AndersonDT,PinarAJ,HavensTC,ScottG,KellerJM."EnablingExplainableFusioninDeepLearningWithFuzzyIntegralNeuralNetworks”.InIEEETransactionsonFuzzySystems.2020;Vol28,no7,pp1291–1300,
ViewArticle
GoogleScholar
76.
KojimaR,IshidaS,OhtaM.,etal.“kGCN:agraph-baseddeeplearningframeworkforchemicalstructures”.J-Cheminform,12,32.,2020.pmid:33430993
ViewArticle
PubMed/NCBI
GoogleScholar
77.
YangZ,DongS.“HierarchicalAttentionGraphConvolutionalNetworkIncorporatingKnowledgeGraphforExplainableRecommendation”.Knowledge-BasedSystems2020,Volume204,106194,
ViewArticle
GoogleScholar
78.
SelvarajuRR.,CogswellM,DasA,VedantamR,ParikhD,BatraD.“Grad-CAM:Visualexplanationsfromdeepnetworksviagradient-basedlocalization”.InProceedingsoftheIEEEInternationalConferenceonComputerVision,2017;618–626.
ViewArticle
GoogleScholar
79.
ZhuQ,XuY,WangH,ZhangC,HanJ,YangC.“TRANSFERLEARNINGOFGRAPHNEURALNETWORKSWITHEGO-GRAPHINFORMATIONMAXIMIZATION”,2020.arXiv:2009.05204v1[cs.LG].
ViewArticle
GoogleScholar
80.
GreffK,SrivastavaRK,KoutníkJ,SteunebrinkBR,SchmidhuberJ."Lstm:Asearchspaceodyssey",IEEEtransactionsonneuralnetworksandlearningsystems,2017;vol28,10,pp2222–2232.pmid:27411231
ViewArticle
PubMed/NCBI
GoogleScholar
81.
AhnH,YimC.“ConvolutionalNeuralNetworksUsingSkipConnectionswithLayerGroupsforSuper-ResolutionImageReconstructionBasedonDeepLearning”.Appl.Sci.10,1959.2020;
ViewArticle
GoogleScholar
82.
ZhuJ,MengQ,ChenW,MaZ.“InterpretingBasisPathSetinNeuralNetworks”,2020,https://arxiv.org/pdf/1910.09402.
ViewArticle
GoogleScholar
83.
YuanH,JiS.“StructPool:StructuredGraphPoolingviaConditionalRandomFields”.In-internationalConferenceonLearningRepresentations.(2020ª).Availablefromhttps://openreview.net/forum?id=BJxg_hVtwH.
ViewArticle
GoogleScholar
84.
ZhangW,YueX,LinW,WuW,LiuR,HuangF,etal.“Predictingdrug-diseaseassociationsbyusingsimilarityconstrainedmatrixfactorization”.BMCBioinformatics19,233,2018.pmid:29914348
ViewArticle
PubMed/NCBI
GoogleScholar
85.
HamiltonWL,YingR,LeskovecJ.“InductiveRepresentationLearningonLargeGraphs”.31stConferenceonNeuralInformationProcessingSystems(NIPS2017),LongBeach,CA,USA.86.
ZhouZ,LiX,N.ZareR.“OptimizingChemicalReactionswithDeepReinforcementLearning”.ACSCent.Sci.2017,3,1337−1344.pmid:29296675
ViewArticle
PubMed/NCBI
GoogleScholar
87.
HatamiN,GavetY,DebayleJ.“ClassificationofTime-SeriesImagesUsingConvolutionalNeuralNetworks”.2017.arXiv:1710.00886v2[cs.CV].01/07/202121:32.pmid:28558002
ViewArticle
PubMed/NCBI
GoogleScholar
88.
DubeS.“HighDimensionalSpaces.DeepLearningandAdversarialExamples”.2018.arXiv:1801.00634v1[cs.CV].Accesseson14/07/202116:21.
ViewArticle
GoogleScholar
89.
Lv-dMaaten,HintonG.“VisualizingDatausingt-SNE”.2008.JournalofMachineLearningResearch9(2008)2579–2605.Accessedon29/06/202123:56.
ViewArticle
GoogleScholar
90.
KaramiA,GnagopadhyayA,ZhouB,KharraziH.“Fuzzyapproachtopicdiscoveryinhealthandmedicalcorpora.InternationalJournalofFuzzySystems”,2017,pp1–12.
ViewArticle
GoogleScholar
91.
RajputNK,GroverBA,RathiVK,“WORDFREQUENCYANDSENTIMENTANALYSISOFTWITTERMESSAGESDURINGCORONAVIRUSPANDEMIC”.2020,arXiv:2004.03925v1[cs.IR].
ViewArticle
GoogleScholar
92.
WaheebSA,AhmedKhanN,ChenB,ShangX.“MachineLearningBasedSentimentTextClassificationforEvaluatingTreatmentQualityofDischargeSummary”.Information.2020;11(5):281.
ViewArticle
GoogleScholar
93.
AroraR,BasuA,MianjyP,MukherjeeA.“UnderstandingDeepNeuralNetworkswithRectifiedLinearUnits”.ICLR2028.arXiv:1611.01491v6[cs.LG].
ViewArticle
GoogleScholar
94.
DongX,ZhouL.“Deepnetworkasmemoryspace:complexity,generalization,disentangledrepresentationandinterpretability”.2019,arXiv:1907.06572v1[cs.LG].Accessedon21/06/502117:28.
ViewArticle
GoogleScholar
95.
HoeflerT,listarhD,Ben-NunT,DrydenN,PesteA.“SparsityinDeepLearning:Pruningandgrowthforefficientinferenceandtraininginneuralnetworks”.2021.arXiv:2102.00554v1[cs.LG].Accessedon04/06/202114:25.
ViewArticle
GoogleScholar
96.
NamdarK,HaiderMA,KhavatiF.“AModifiedAUCforTrainingConvolutionalNeuralNetworks:TakingConfidenceintoAccount”.2020,ArXiv:2006.04836[cs.LG].
ViewArticle
GoogleScholar
97.
KaramiA,LundyM,WebbF,DwivediYK."TwitterandResearch:ASystematicLiteratureReviewThroughTextMining,"inIEEEAccess,2020;vol.8,pp67698–67717.
ViewArticle
GoogleScholar
98.
ShawG,KaramiA.“ComputationalContentAnalysisofNegativeTweetsforObesity,Diet,Diabetes,andExercise”.ASIS&T2017,Washington,DC.
ViewArticle
GoogleScholar
99.
KaramiA,GangopadhyayA,ZhouB,KharraziH.“FuzzyApproachTopicDiscoveryinHealthandMedicalCorpora”,2017;arXiv:1705.00995v2[stat.ML].Accessedon08/06/202109:47.
ViewArticle
GoogleScholar
100.
JiangK,FengS,SongQ,CalixRA,GuptaM,BernardGN.“IdentifyingtweetsofpersonalhealthexperiencethroughwordembeddingandLSTMneuralnetwork”.BMCBioinformatics2018,19,210.Accessedon12/06/202107:14.pmid:29897323
ViewArticle
PubMed/NCBI
GoogleScholar
101.
KolajoT,KolajoJO.“SENTIMENTANALYSISONTWITTERHEALTHNEWS”.FUDMAJournalofScience(FJS).2018,Vol.2No.2,pp14–20.
ViewArticle
GoogleScholar
102.
CirqueiraD,AlmeidaF,CakirG,JacobA,LobatoF,BezbradicaM,etal.“ExplainableSentimentAnalysisApplicationforSocialMediaCrisisManagementinRetail”.InProceedinsofthe4thInternationalConferenceonComputer-HumanInteractionResearchandApplications(CHIRA2020),pp319–328.
ViewArticle
GoogleScholar
103.
ChenH,JiY.“ImprovingtheExplainabilityofNeuralSentimentClassifiersviaDataAugmentation”.arXiv:1909.04225v4[cs.CL].Accessedon02/06/202112:25.
ViewArticle
GoogleScholar
104.
RudinC.“Stopexplainingblackboxmachinelearningmodelsforhighstakesdecisionsanduseinterpretablemodelsinstead”.NatureMachineIntelligence,1(5),206;2019.
ViewArticle
GoogleScholar
105.
PradhanS,ElhadadNChapmanW,ManandharS,SavovaG.(2014).SemEval-2014Task7:AnalysisofClinicalText”.Proceedingsofthe8thInternationalWorkshoponSemanticEvaluation,2014;pp54–62.
ViewArticle
GoogleScholar
DownloadPDF
Citation
XML
Print
Printarticle
Reprints
Share
Reddit
Facebook
LinkedIn
Mendeley
Twitter
Email
Advertisement
SubjectAreas?
FormoreinformationaboutPLOSSubjectAreas,click
here.
Wewantyourfeedback.DotheseSubjectAreasmakesenseforthisarticle?ClickthetargetnexttotheincorrectSubjectAreaandletusknow.Thanksforyourhelp!
Graphs
IstheSubjectArea"Graphs"applicabletothisarticle?
Yes
No
Thanksforyourfeedback.
Twitter
IstheSubjectArea"Twitter"applicabletothisarticle?
Yes
No
Thanksforyourfeedback.
Neuralnetworks
IstheSubjectArea"Neuralnetworks"applicabletothisarticle?
Yes
No
Thanksforyourfeedback.
Semantics
IstheSubjectArea"Semantics"applicabletothisarticle?
Yes
No
Thanksforyourfeedback.
Neurons
IstheSubjectArea"Neurons"applicabletothisarticle?
Yes
No
Thanksforyourfeedback.
Machinelearning
IstheSubjectArea"Machinelearning"applicabletothisarticle?
Yes
No
Thanksforyourfeedback.
Algorithms
IstheSubjectArea"Algorithms"applicabletothisarticle?
Yes
No
Thanksforyourfeedback.
Learning
IstheSubjectArea"Learning"applicabletothisarticle?
Yes
No
Thanksforyourfeedback.
延伸文章資訊
- 1Knowledge Graph Augmented Network Towards ... - arXiv
Abstract—Aspect-based sentiment analysis (ABSA) is a fine-grained task of ... deep learning model...
- 2Sentiment Analysis in Twitter Based on Knowledge Graph and ...
In this proposal, tweets are represented as graphs; then, graph similarity metrics and a Deep Lea...
- 3Sentiment Analysis in Twitter Based on Knowledge Graph and Deep ...
This work proposes a new hybrid approach for Sentiment Analysis based on Knowledge Graphs and Dee...
- 4Sentiment Analysis in Twitter Based on Knowledge Graph and ...
This work proposes a new hybrid approach for Sentiment Analysis based on Knowledge Graphs and Dee...
- 5DICE @ TREC-IS 2018: Combining Knowledge Graphs and ...
We investigated different machine learning approaches to classify crisis-related tweets into diff...