Polynomial - Wikipedia
文章推薦指數: 80 %
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of ...
Polynomial
FromWikipedia,thefreeencyclopedia
Jumptonavigation
Jumptosearch
Typeofmathematicalexpressions
Forlesselementaryaspectsofthesubject,seePolynomialring.
Inmathematics,apolynomialisanexpressionconsistingofindeterminates(alsocalledvariables)andcoefficients,thatinvolvesonlytheoperationsofaddition,subtraction,multiplication,andnon-negativeintegerexponentiationofvariables.Anexampleofapolynomialofasingleindeterminatexisx2−4x+7.Anexampleinthreevariablesisx3+2xyz2−yz+1.
Polynomialsappearinmanyareasofmathematicsandscience.Forexample,theyareusedtoformpolynomialequations,whichencodeawiderangeofproblems,fromelementarywordproblemstocomplicatedscientificproblems;theyareusedtodefinepolynomialfunctions,whichappearinsettingsrangingfrombasicchemistryandphysicstoeconomicsandsocialscience;theyareusedincalculusandnumericalanalysistoapproximateotherfunctions.Inadvancedmathematics,polynomialsareusedtoconstructpolynomialringsandalgebraicvarieties,whicharecentralconceptsinalgebraandalgebraicgeometry.
Contents
1Etymology
2Notationandterminology
3Definition
4Classification
5Arithmetic
5.1Additionandsubtraction
5.2Multiplication
5.3Composition
5.4Division
5.5Factoring
5.6Calculus
6Polynomialfunctions
6.1Graphs
7Equations
7.1Solvingequations
8Polynomialexpressions
8.1Trigonometricpolynomials
8.2Matrixpolynomials
8.3Exponentialpolynomials
9Relatedconcepts
9.1Rationalfunctions
9.2Laurentpolynomials
9.3Powerseries
10Polynomialring
10.1Divisibility
11Applications
11.1Positionalnotation
11.2Interpolationandapproximation
11.3Otherapplications
12History
12.1Historyofthenotation
13Seealso
14Notes
15References
16Externallinks
Etymology[edit]
Thewordpolynomialjoinstwodiverseroots:theGreekpoly,meaning"many",andtheLatinnomen,or"name".ItwasderivedfromthetermbinomialbyreplacingtheLatinrootbi-withtheGreekpoly-.Thatis,itmeansasumofmanyterms(manymonomials).Thewordpolynomialwasfirstusedinthe17thcentury.[1]
Notationandterminology[edit]
Thegraphofapolynomialfunctionofdegree3
Thexoccurringinapolynomialiscommonlycalledavariableoranindeterminate.Whenthepolynomialisconsideredasanexpression,xisafixedsymbolwhichdoesnothaveanyvalue(itsvalueis"indeterminate").However,whenoneconsidersthefunctiondefinedbythepolynomial,thenxrepresentstheargumentofthefunction,andisthereforecalleda"variable".Manyauthorsusethesetwowordsinterchangeably.
ApolynomialPintheindeterminatexiscommonlydenotedeitherasPorasP(x).Formally,thenameofthepolynomialisP,notP(x),buttheuseofthefunctionalnotationP(x)datesfromatimewhenthedistinctionbetweenapolynomialandtheassociatedfunctionwasunclear.Moreover,thefunctionalnotationisoftenusefulforspecifying,inasinglephrase,apolynomialanditsindeterminate.Forexample,"letP(x)beapolynomial"isashorthandfor"letPbeapolynomialintheindeterminatex".Ontheotherhand,whenitisnotnecessarytoemphasizethenameoftheindeterminate,manyformulasaremuchsimplerandeasiertoreadifthename(s)oftheindeterminate(s)donotappearateachoccurrenceofthepolynomial.
Theambiguityofhavingtwonotationsforasinglemathematicalobjectmaybeformallyresolvedbyconsideringthegeneralmeaningofthefunctionalnotationforpolynomials.
Ifadenotesanumber,avariable,anotherpolynomial,or,moregenerally,anyexpression,thenP(a)denotes,byconvention,theresultofsubstitutingaforxinP.Thus,thepolynomialPdefinesthefunction
a
↦
P
(
a
)
,
{\displaystylea\mapstoP(a),}
whichisthepolynomialfunctionassociatedtoP.
Frequently,whenusingthisnotation,onesupposesthataisanumber.However,onemayuseitoveranydomainwhereadditionandmultiplicationaredefined(thatis,anyring).Inparticular,ifaisapolynomialthenP(a)isalsoapolynomial.
Morespecifically,whenaistheindeterminatex,thentheimageofxbythisfunctionisthepolynomialPitself(substitutingxforxdoesnotchangeanything).Inotherwords,
P
(
x
)
=
P
,
{\displaystyleP(x)=P,}
whichjustifiesformallytheexistenceoftwonotationsforthesamepolynomial.
Definition[edit]
Apolynomialexpressionisanexpressionthatcanbebuiltfromconstantsandsymbolscalledvariablesorindeterminatesbymeansofaddition,multiplicationandexponentiationtoanon-negativeintegerpower.Theconstantsaregenerallynumbers,butmaybeanyexpressionthatdonotinvolvetheindeterminates,andrepresentmathematicalobjectsthatcanbeaddedandmultiplied.Twopolynomialexpressionsareconsideredasdefiningthesamepolynomialiftheymaybetransformed,onetotheother,byapplyingtheusualpropertiesofcommutativity,associativityanddistributivityofadditionandmultiplication.Forexample
(
x
−
1
)
(
x
−
2
)
{\displaystyle(x-1)(x-2)}
and
x
2
−
3
x
+
2
{\displaystylex^{2}-3x+2}
aretwopolynomialexpressionsthatrepresentthesamepolynomial;so,onewrites
(
x
−
1
)
(
x
−
2
)
=
x
2
−
3
x
+
2.
{\displaystyle(x-1)(x-2)=x^{2}-3x+2.}
Apolynomialinasingleindeterminatexcanalwaysbewritten(orrewritten)intheform
a
n
x
n
+
a
n
−
1
x
n
−
1
+
⋯
+
a
2
x
2
+
a
1
x
+
a
0
,
{\displaystylea_{n}x^{n}+a_{n-1}x^{n-1}+\dotsb+a_{2}x^{2}+a_{1}x+a_{0},}
where
a
0
,
…
,
a
n
{\displaystylea_{0},\ldots,a_{n}}
areconstantsthatarecalledthecoefficientsofthepolynomial,and
x
{\displaystylex}
istheindeterminate.[2]Theword"indeterminate"meansthat
x
{\displaystylex}
representsnoparticularvalue,althoughanyvaluemaybesubstitutedforit.Themappingthatassociatestheresultofthissubstitutiontothesubstitutedvalueisafunction,calledapolynomialfunction.
Thiscanbeexpressedmoreconciselybyusingsummationnotation:
∑
k
=
0
n
a
k
x
k
{\displaystyle\sum_{k=0}^{n}a_{k}x^{k}}
Thatis,apolynomialcaneitherbezeroorcanbewrittenasthesumofafinitenumberofnon-zeroterms.Eachtermconsistsoftheproductofanumber –calledthecoefficientoftheterm[a] –andafinitenumberofindeterminates,raisedtonon-negativeintegerpowers.
Classification[edit]
Furtherinformation:Degreeofapolynomial
Theexponentonanindeterminateinatermiscalledthedegreeofthatindeterminateinthatterm;thedegreeofthetermisthesumofthedegreesoftheindeterminatesinthatterm,andthedegreeofapolynomialisthelargestdegreeofanytermwithnonzerocoefficient.[3]Becausex=x1,thedegreeofanindeterminatewithoutawrittenexponentisone.
Atermwithnoindeterminatesandapolynomialwithnoindeterminatesarecalled,respectively,aconstanttermandaconstantpolynomial.[b]Thedegreeofaconstanttermandofanonzeroconstantpolynomialis0.Thedegreeofthezeropolynomial0(whichhasnotermsatall)isgenerallytreatedasnotdefined(butseebelow).[4]
Forexample:
−
5
x
2
y
{\displaystyle-5x^{2}y}
isaterm.Thecoefficientis−5,theindeterminatesarexandy,thedegreeofxistwo,whilethedegreeofyisone.Thedegreeoftheentiretermisthesumofthedegreesofeachindeterminateinit,sointhisexamplethedegreeis2+1=3.
Formingasumofseveraltermsproducesapolynomial.Forexample,thefollowingisapolynomial:
3
x
2
⏟
t
e
r
m
1
−
5
x
⏟
t
e
r
m
2
+
4
⏟
t
e
r
m
3
.
{\displaystyle\underbrace{_{\,}3x^{2}}_{\begin{smallmatrix}\mathrm{term}\\\mathrm{1}\end{smallmatrix}}\underbrace{-_{\,}5x}_{\begin{smallmatrix}\mathrm{term}\\\mathrm{2}\end{smallmatrix}}\underbrace{+_{\,}4}_{\begin{smallmatrix}\mathrm{term}\\\mathrm{3}\end{smallmatrix}}.}
Itconsistsofthreeterms:thefirstisdegreetwo,thesecondisdegreeone,andthethirdisdegreezero.
Polynomialsofsmalldegreehavebeengivenspecificnames.Apolynomialofdegreezeroisaconstantpolynomial,orsimplyaconstant.Polynomialsofdegreeone,twoorthreearerespectivelylinearpolynomials,quadraticpolynomialsandcubicpolynomials.[3]Forhigherdegrees,thespecificnamesarenotcommonlyused,althoughquarticpolynomial(fordegreefour)andquinticpolynomial(fordegreefive)aresometimesused.Thenamesforthedegreesmaybeappliedtothepolynomialortoitsterms.Forexample,theterm2xinx2+2x+1isalinearterminaquadraticpolynomial.
Thepolynomial0,whichmaybeconsideredtohavenotermsatall,iscalledthezeropolynomial.Unlikeotherconstantpolynomials,itsdegreeisnotzero.Rather,thedegreeofthezeropolynomialiseitherleftexplicitlyundefined,ordefinedasnegative(either−1or−∞).[5]Thezeropolynomialisalsouniqueinthatitistheonlypolynomialinoneindeterminatethathasaninfinitenumberofroots.Thegraphofthezeropolynomial,f(x)=0,isthex-axis.
Inthecaseofpolynomialsinmorethanoneindeterminate,apolynomialiscalledhomogeneousofdegreenifallofitsnon-zerotermshavedegreen.Thezeropolynomialishomogeneous,and,asahomogeneouspolynomial,itsdegreeisundefined.[c]Forexample,x3y2+7x2y3−3x5ishomogeneousofdegree5.Formoredetails,seeHomogeneouspolynomial.
Thecommutativelawofadditioncanbeusedtorearrangetermsintoanypreferredorder.Inpolynomialswithoneindeterminate,thetermsareusuallyorderedaccordingtodegree,eitherin"descendingpowersofx",withthetermoflargestdegreefirst,orin"ascendingpowersofx".Thepolynomial3x2-5x+4iswrittenindescendingpowersofx.Thefirsttermhascoefficient3,indeterminatex,andexponent2.Inthesecondterm,thecoefficientis−5.Thethirdtermisaconstant.Becausethedegreeofanon-zeropolynomialisthelargestdegreeofanyoneterm,thispolynomialhasdegreetwo.[6]
Twotermswiththesameindeterminatesraisedtothesamepowersarecalled"similarterms"or"liketerms",andtheycanbecombined,usingthedistributivelaw,intoasingletermwhosecoefficientisthesumofthecoefficientsofthetermsthatwerecombined.Itmayhappenthatthismakesthecoefficient0.[7]Polynomialscanbeclassifiedbythenumberoftermswithnonzerocoefficients,sothataone-termpolynomialiscalledamonomial,[d]atwo-termpolynomialiscalledabinomial,andathree-termpolynomialiscalledatrinomial.Theterm"quadrinomial"isoccasionallyusedforafour-termpolynomial.
Arealpolynomialisapolynomialwithrealcoefficients.Whenitisusedtodefineafunction,thedomainisnotsorestricted.However,arealpolynomialfunctionisafunctionfromtherealstotherealsthatisdefinedbyarealpolynomial.Similarly,anintegerpolynomialisapolynomialwithintegercoefficients,andacomplexpolynomialisapolynomialwithcomplexcoefficients.
Apolynomialinoneindeterminateiscalledaunivariatepolynomial,apolynomialinmorethanoneindeterminateiscalledamultivariatepolynomial.Apolynomialwithtwoindeterminatesiscalledabivariatepolynomial.[2]Thesenotionsrefermoretothekindofpolynomialsoneisgenerallyworkingwiththantoindividualpolynomials;forinstance,whenworkingwithunivariatepolynomials,onedoesnotexcludeconstantpolynomials(whichmayresultfromthesubtractionofnon-constantpolynomials),althoughstrictlyspeaking,constantpolynomialsdonotcontainanyindeterminatesatall.Itispossibletofurtherclassifymultivariatepolynomialsasbivariate,trivariate,andsoon,accordingtothemaximumnumberofindeterminatesallowed.Again,sothatthesetofobjectsunderconsiderationbeclosedundersubtraction,astudyoftrivariatepolynomialsusuallyallowsbivariatepolynomials,andsoon.Itisalsocommontosaysimply"polynomialsinx,y,andz",listingtheindeterminatesallowed.
Theevaluationofapolynomialconsistsofsubstitutinganumericalvaluetoeachindeterminateandcarryingouttheindicatedmultiplicationsandadditions.Forpolynomialsinoneindeterminate,theevaluationisusuallymoreefficient(lowernumberofarithmeticoperationstoperform)usingHorner'smethod:
(
(
(
(
(
a
n
x
+
a
n
−
1
)
x
+
a
n
−
2
)
x
+
⋯
+
a
3
)
x
+
a
2
)
x
+
a
1
)
x
+
a
0
.
{\displaystyle(((((a_{n}x+a_{n-1})x+a_{n-2})x+\dotsb+a_{3})x+a_{2})x+a_{1})x+a_{0}.}
Arithmetic[edit]
Additionandsubtraction[edit]
Polynomialscanbeaddedusingtheassociativelawofaddition(groupingalltheirtermstogetherintoasinglesum),possiblyfollowedbyreordering(usingthecommutativelaw)andcombiningofliketerms.[7][8]Forexample,if
P
=
3
x
2
−
2
x
+
5
x
y
−
2
{\displaystyleP=3x^{2}-2x+5xy-2}
and
Q
=
−
3
x
2
+
3
x
+
4
y
2
+
8
{\displaystyleQ=-3x^{2}+3x+4y^{2}+8}
thenthesum
P
+
Q
=
3
x
2
−
2
x
+
5
x
y
−
2
−
3
x
2
+
3
x
+
4
y
2
+
8
{\displaystyleP+Q=3x^{2}-2x+5xy-2-3x^{2}+3x+4y^{2}+8}
canbereorderedandregroupedas
P
+
Q
=
(
3
x
2
−
3
x
2
)
+
(
−
2
x
+
3
x
)
+
5
x
y
+
4
y
2
+
(
8
−
2
)
{\displaystyleP+Q=(3x^{2}-3x^{2})+(-2x+3x)+5xy+4y^{2}+(8-2)}
andthensimplifiedto
P
+
Q
=
x
+
5
x
y
+
4
y
2
+
6.
{\displaystyleP+Q=x+5xy+4y^{2}+6.}
Whenpolynomialsareaddedtogether,theresultisanotherpolynomial.[9]
Subtractionofpolynomialsissimilar.
Multiplication[edit]
Polynomialscanalsobemultiplied.Toexpandtheproductoftwopolynomialsintoasumofterms,thedistributivelawisrepeatedlyapplied,whichresultsineachtermofonepolynomialbeingmultipliedbyeverytermoftheother.[7]Forexample,if
P
=
2
x
+
3
y
+
5
Q
=
2
x
+
5
y
+
x
y
+
1
{\displaystyle{\begin{aligned}\color{Red}P&\color{Red}{=2x+3y+5}\\\color{Blue}Q&\color{Blue}{=2x+5y+xy+1}\end{aligned}}}
then
P
Q
=
(
2
x
⋅
2
x
)
+
(
2
x
⋅
5
y
)
+
(
2
x
⋅
x
y
)
+
(
2
x
⋅
1
)
+
(
3
y
⋅
2
x
)
+
(
3
y
⋅
5
y
)
+
(
3
y
⋅
x
y
)
+
(
3
y
⋅
1
)
+
(
5
⋅
2
x
)
+
(
5
⋅
5
y
)
+
(
5
⋅
x
y
)
+
(
5
⋅
1
)
{\displaystyle{\begin{array}{rccrcrcrcr}{\color{Red}{P}}{\color{Blue}{Q}}&{=}&&({\color{Red}{2x}}\cdot{\color{Blue}{2x}})&+&({\color{Red}{2x}}\cdot{\color{Blue}{5y}})&+&({\color{Red}{2x}}\cdot{\color{Blue}{xy}})&+&({\color{Red}{2x}}\cdot{\color{Blue}{1}})\\&&+&({\color{Red}{3y}}\cdot{\color{Blue}{2x}})&+&({\color{Red}{3y}}\cdot{\color{Blue}{5y}})&+&({\color{Red}{3y}}\cdot{\color{Blue}{xy}})&+&({\color{Red}{3y}}\cdot{\color{Blue}{1}})\\&&+&({\color{Red}{5}}\cdot{\color{Blue}{2x}})&+&({\color{Red}{5}}\cdot{\color{Blue}{5y}})&+&({\color{Red}{5}}\cdot{\color{Blue}{xy}})&+&({\color{Red}{5}}\cdot{\color{Blue}{1}})\end{array}}}
Carryingoutthemultiplicationineachtermproduces
P
Q
=
4
x
2
+
10
x
y
+
2
x
2
y
+
2
x
+
6
x
y
+
15
y
2
+
3
x
y
2
+
3
y
+
10
x
+
25
y
+
5
x
y
+
5.
{\displaystyle{\begin{array}{rccrcrcrcr}PQ&=&&4x^{2}&+&10xy&+&2x^{2}y&+&2x\\&&+&6xy&+&15y^{2}&+&3xy^{2}&+&3y\\&&+&10x&+&25y&+&5xy&+&5.\end{array}}}
Combiningsimilartermsyields
P
Q
=
4
x
2
+
(
10
x
y
+
6
x
y
+
5
x
y
)
+
2
x
2
y
+
(
2
x
+
10
x
)
+
15
y
2
+
3
x
y
2
+
(
3
y
+
25
y
)
+
5
{\displaystyle{\begin{array}{rcccrcrcrcr}PQ&=&&4x^{2}&+&(10xy+6xy+5xy)&+&2x^{2}y&+&(2x+10x)\\&&+&15y^{2}&+&3xy^{2}&+&(3y+25y)&+&5\end{array}}}
whichcanbesimplifiedto
P
Q
=
4
x
2
+
21
x
y
+
2
x
2
y
+
12
x
+
15
y
2
+
3
x
y
2
+
28
y
+
5.
{\displaystylePQ=4x^{2}+21xy+2x^{2}y+12x+15y^{2}+3xy^{2}+28y+5.}
Asintheexample,theproductofpolynomialsisalwaysapolynomial.[9][4]
Composition[edit]
Givenapolynomial
f
{\displaystylef}
ofasinglevariableandanotherpolynomialgofanynumberofvariables,thecomposition
f
∘
g
{\displaystylef\circg}
isobtainedbysubstitutingeachcopyofthevariableofthefirstpolynomialbythesecondpolynomial.[4]Forexample,if
f
(
x
)
=
x
2
+
2
x
{\displaystylef(x)=x^{2}+2x}
and
g
(
x
)
=
3
x
+
2
{\displaystyleg(x)=3x+2}
then
(
f
∘
g
)
(
x
)
=
f
(
g
(
x
)
)
=
(
3
x
+
2
)
2
+
2
(
3
x
+
2
)
.
{\displaystyle(f\circg)(x)=f(g(x))=(3x+2)^{2}+2(3x+2).}
Acompositionmaybeexpandedtoasumoftermsusingtherulesformultiplicationanddivisionofpolynomials.Thecompositionoftwopolynomialsisanotherpolynomial.[10]
Division[edit]
Thedivisionofonepolynomialbyanotherisnottypicallyapolynomial.Instead,suchratiosareamoregeneralfamilyofobjects,calledrationalfractions,rationalexpressions,orrationalfunctions,dependingoncontext.[11]Thisisanalogoustothefactthattheratiooftwointegersisarationalnumber,notnecessarilyaninteger.[12][13]Forexample,thefraction1/(x2+1)isnotapolynomial,anditcannotbewrittenasafinitesumofpowersofthevariablex.
Forpolynomialsinonevariable,thereisanotionofEuclideandivisionofpolynomials,generalizingtheEuclideandivisionofintegers.[e]Thisnotionofthedivisiona(x)/b(x)resultsintwopolynomials,aquotientq(x)andaremainderr(x),suchthata=bq+randdegree(r)
延伸文章資訊
- 1Polynomial - Wikipedia
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables...
- 2Polynomial - 演算法筆記
Dense Polynomial : array ,一格存一項。索引值是次方,內容是係數。 ₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉. |8|4|0|2 ...
- 3polynomial中文(繁體)翻譯:劍橋詞典
The explicit forms of these polynomial equations have been found. 來自Cambridge English Corpus. 示例中...
- 4Polynomials - Math is Fun
that can be combined using addition, subtraction, multiplication and division ... ... So: A polyn...
- 5Polynomials (Definition, Types and Examples) - Byju's
A polynomial is defined as an expression which is composed of variables, constants and exponents,...